FacLens: Transferable Probe for Foreseeing Non-Factuality in Large Language Models
- URL: http://arxiv.org/abs/2406.05328v3
- Date: Tue, 08 Oct 2024 03:26:40 GMT
- Title: FacLens: Transferable Probe for Foreseeing Non-Factuality in Large Language Models
- Authors: Yanling Wang, Haoyang Li, Hao Zou, Jing Zhang, Xinlei He, Qi Li, Ke Xu,
- Abstract summary: This work studies non-factuality prediction (NFP), aiming to predict whether an LLM will generate a non-factual response to a question.
We propose a lightweight NFP model named Factuality Lens (FacLens), which effectively probes hidden representations of questions for the NFP task.
- Score: 34.985758097434946
- License:
- Abstract: Despite advancements in large language models (LLMs), non-factual responses remain prevalent. Unlike extensive studies on post-hoc detection of such responses, this work studies non-factuality prediction (NFP), aiming to predict whether an LLM will generate a non-factual response to a question before the generation process. Previous efforts on NFP have demonstrated LLMs' awareness of their internal knowledge, but they still face challenges in efficiency and transferability. In this work, we propose a lightweight NFP model named Factuality Lens (FacLens), which effectively probes hidden representations of questions for the NFP task. Besides, we discover that hidden question representations sourced from different LLMs exhibit similar NFP patterns, which enables the transferability of FacLens across LLMs to reduce development costs. Extensive experiments highlight FacLens's superiority in both effectiveness and efficiency.
Related papers
- Transforming Scholarly Landscapes: Influence of Large Language Models on Academic Fields beyond Computer Science [77.31665252336157]
Large Language Models (LLMs) have ushered in a transformative era in Natural Language Processing (NLP)
This work empirically examines the influence and use of LLMs in fields beyond NLP.
arXiv Detail & Related papers (2024-09-29T01:32:35Z) - From Yes-Men to Truth-Tellers: Addressing Sycophancy in Large Language Models with Pinpoint Tuning [89.9648814145473]
Large Language Models (LLMs) tend to prioritize adherence to user prompts over providing veracious responses.
Recent works propose to employ supervised fine-tuning (SFT) to mitigate the sycophancy issue.
We propose a novel supervised pinpoint tuning (SPT), where the region-of-interest modules are tuned for a given objective.
arXiv Detail & Related papers (2024-09-03T07:01:37Z) - Defining Boundaries: A Spectrum of Task Feasibility for Large Language Models [6.008311204104302]
Large language models (LLMs) have shown remarkable performance in various tasks but often fail to handle queries that exceed their knowledge and capabilities.
This paper addresses the need for LLMs to recognize and refuse infeasible tasks due to the required skills surpassing their capabilities.
arXiv Detail & Related papers (2024-08-11T22:58:23Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - LLMs for Generating and Evaluating Counterfactuals: A Comprehensive Study [2.7731115923558143]
Large Language Models (LLMs) have shown remarkable performance in NLP tasks, but their efficacy in generating high-quality Counterfactuals (CFs) remains uncertain.
We compare several common LLMs and evaluate their CFs, assessing both intrinsic metrics, and the impact of these CFs on data augmentation.
Our results show that LLMs generate fluent CFs, but struggle to keep the induced changes minimal.
arXiv Detail & Related papers (2024-04-26T11:57:21Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Are Large Language Models Good Fact Checkers: A Preliminary Study [26.023148371263012]
Large Language Models (LLMs) have drawn significant attention due to their outstanding reasoning capabilities and extensive knowledge repository.
This study aims to comprehensively evaluate various LLMs in tackling specific fact-checking subtasks.
arXiv Detail & Related papers (2023-11-29T05:04:52Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Prompting Large Language Models for Counterfactual Generation: An
Empirical Study [13.506528217009507]
Large language models (LLMs) have made remarkable progress in a wide range of natural language understanding and generation tasks.
We present a comprehensive evaluation framework on various types of NLU tasks, which covers all key factors in determining LLMs' capability of generating counterfactuals.
arXiv Detail & Related papers (2023-05-24T06:44:32Z) - Rethinking with Retrieval: Faithful Large Language Model Inference [91.66406351103484]
We propose a novel post-processing approach, rethinking with retrieval (RR)
RR retrieves relevant external knowledge based on the reasoning steps obtained from the chain-of-thought prompting.
We evaluate the effectiveness of RR through extensive experiments with GPT-3 on three complex reasoning tasks.
arXiv Detail & Related papers (2022-12-31T22:35:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.