Flexible and Adaptable Summarization via Expertise Separation
- URL: http://arxiv.org/abs/2406.05360v1
- Date: Sat, 8 Jun 2024 05:31:19 GMT
- Title: Flexible and Adaptable Summarization via Expertise Separation
- Authors: Xiuying Chen, Mingzhe Li, Shen Gao, Xin Cheng, Qingqing Zhu, Rui Yan, Xin Gao, Xiangliang Zhang,
- Abstract summary: A proficient summarization model should exhibit both flexibility and adaptability.
We propose MoeSumm, a Mixture-of-Expert Summarization architecture.
Our model's distinct separation of general and domain-specific summarization abilities grants it with notable flexibility and adaptability.
- Score: 59.26639426529827
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A proficient summarization model should exhibit both flexibility -- the capacity to handle a range of in-domain summarization tasks, and adaptability -- the competence to acquire new knowledge and adjust to unseen out-of-domain tasks. Unlike large language models (LLMs) that achieve this through parameter scaling, we propose a more parameter-efficient approach in this study. Our motivation rests on the principle that the general summarization ability to capture salient information can be shared across different tasks, while the domain-specific summarization abilities need to be distinct and tailored. Concretely, we propose MoeSumm, a Mixture-of-Expert Summarization architecture, which utilizes a main expert for gaining the general summarization capability and deputy experts that selectively collaborate to meet specific summarization task requirements. We further propose a max-margin loss to stimulate the separation of these abilities. Our model's distinct separation of general and domain-specific summarization abilities grants it with notable flexibility and adaptability, all while maintaining parameter efficiency. MoeSumm achieves flexibility by managing summarization across multiple domains with a single model, utilizing a shared main expert and selected deputy experts. It exhibits adaptability by tailoring deputy experts to cater to out-of-domain few-shot and zero-shot scenarios. Experimental results on 11 datasets show the superiority of our model compared with recent baselines and LLMs. We also provide statistical and visual evidence of the distinct separation of the two abilities in MoeSumm (https://github.com/iriscxy/MoE_Summ).
Related papers
- Self-MoE: Towards Compositional Large Language Models with Self-Specialized Experts [49.950419707905944]
We present Self-MoE, an approach that transforms a monolithic LLM into a compositional, modular system of self-specialized experts.
Our approach leverages self-specialization, which constructs expert modules using self-generated synthetic data.
Our findings highlight the critical role of modularity, the applicability of Self-MoE to multiple base LLMs, and the potential of self-improvement in achieving efficient, scalable, and adaptable systems.
arXiv Detail & Related papers (2024-06-17T19:06:54Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications.
MoE has been emerged as a promising solution with its sparse architecture for effective task decoupling.
Intuition-MoR1E achieves superior efficiency and 2.15% overall accuracy improvement across 14 public datasets.
arXiv Detail & Related papers (2024-04-13T12:14:58Z) - Merging Multi-Task Models via Weight-Ensembling Mixture of Experts [64.94129594112557]
Merging Transformer-based models trained on different tasks into a single unified model can execute all the tasks concurrently.
Previous methods, exemplified by task arithmetic, have been proven to be both effective and scalable.
We propose to merge most of the parameters while upscaling the Transformer layers to a weight-ensembling mixture of experts (MoE) module.
arXiv Detail & Related papers (2024-02-01T08:58:57Z) - SimMMDG: A Simple and Effective Framework for Multi-modal Domain
Generalization [13.456240733175767]
SimMMDG is a framework to overcome the challenges of achieving domain generalization in multi-modal scenarios.
We employ supervised contrastive learning on the modality-shared features to ensure they possess joint properties and impose distance constraints.
Our framework is theoretically well-supported and achieves strong performance in multi-modal DG on the EPIC-Kitchens dataset and the novel Human-Animal-Cartoon dataset.
arXiv Detail & Related papers (2023-10-30T17:58:09Z) - One-stage Modality Distillation for Incomplete Multimodal Learning [7.791488931628906]
This paper presents a one-stage modality distillation framework that unifies the privileged knowledge transfer and modality information fusion.
The proposed framework can overcome the problem of incomplete modality input in various scenes and achieve state-of-the-art performance.
arXiv Detail & Related papers (2023-09-15T07:12:27Z) - Adapter-based Selective Knowledge Distillation for Federated
Multi-domain Meeting Summarization [36.916155654985936]
Meeting summarization has emerged as a promising technique for providing users with condensed summaries.
We propose adapter-based Federated Selective Knowledge Distillation (AdaFedSelecKD) for training performant client models.
arXiv Detail & Related papers (2023-08-07T03:34:01Z) - Mod-Squad: Designing Mixture of Experts As Modular Multi-Task Learners [74.92558307689265]
We propose Mod-Squad, a new model that is Modularized into groups of experts (a 'Squad')
We optimize this matching process during the training of a single model.
Experiments on the Taskonomy dataset with 13 vision tasks and the PASCAL-Context dataset with 5 vision tasks show the superiority of our approach.
arXiv Detail & Related papers (2022-12-15T18:59:52Z) - UniSumm and SummZoo: Unified Model and Diverse Benchmark for Few-Shot
Summarization [54.59104881168188]
textscUniSumm is a unified few-shot summarization model pre-trained with multiple summarization tasks.
textscSummZoo is a new benchmark to better evaluate few-shot summarizers.
arXiv Detail & Related papers (2022-11-17T18:54:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.