Self-MoE: Towards Compositional Large Language Models with Self-Specialized Experts
- URL: http://arxiv.org/abs/2406.12034v2
- Date: Mon, 07 Oct 2024 14:27:56 GMT
- Title: Self-MoE: Towards Compositional Large Language Models with Self-Specialized Experts
- Authors: Junmo Kang, Leonid Karlinsky, Hongyin Luo, Zhen Wang, Jacob Hansen, James Glass, David Cox, Rameswar Panda, Rogerio Feris, Alan Ritter,
- Abstract summary: We present Self-MoE, an approach that transforms a monolithic LLM into a compositional, modular system of self-specialized experts.
Our approach leverages self-specialization, which constructs expert modules using self-generated synthetic data.
Our findings highlight the critical role of modularity, the applicability of Self-MoE to multiple base LLMs, and the potential of self-improvement in achieving efficient, scalable, and adaptable systems.
- Score: 49.950419707905944
- License:
- Abstract: We present Self-MoE, an approach that transforms a monolithic LLM into a compositional, modular system of self-specialized experts, named MiXSE (MiXture of Self-specialized Experts). Our approach leverages self-specialization, which constructs expert modules using self-generated synthetic data, each equipping a shared base LLM with distinct domain-specific capabilities, activated via self-optimized routing. This allows for dynamic and capability-specific handling of various target tasks, enhancing overall capabilities, without extensive human-labeled data and added parameters. Our empirical results reveal that specializing LLMs may exhibit potential trade-offs in performances on non-specialized tasks. On the other hand, our Self-MoE demonstrates substantial improvements (6.5%p on average) over the base LLM across diverse benchmarks such as knowledge, reasoning, math, and coding. It also consistently outperforms other methods, including instance merging and weight merging, while offering better flexibility and interpretability by design with semantic experts and routing. Our findings highlight the critical role of modularity, the applicability of Self-MoE to multiple base LLMs, and the potential of self-improvement in achieving efficient, scalable, and adaptable systems.
Related papers
Err
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.