PTF-FSR: A Parameter Transmission-Free Federated Sequential Recommender System
- URL: http://arxiv.org/abs/2406.05387v1
- Date: Sat, 08 Jun 2024 07:45:46 GMT
- Title: PTF-FSR: A Parameter Transmission-Free Federated Sequential Recommender System
- Authors: Wei Yuan, Chaoqun Yang, Liang Qu, Quoc Viet Hung Nguyen, Guanhua Ye, Hongzhi Yin,
- Abstract summary: This paper proposes a parameter transmission-free federated sequential recommendation framework (PTF-FSR)
PTF-FSR ensures both model and data privacy protection to meet the privacy needs of service providers and system users alike.
- Score: 42.79538136366075
- License:
- Abstract: Sequential recommender systems have made significant progress. Recently, due to increasing concerns about user data privacy, some researchers have implemented federated learning for sequential recommendation, a.k.a., Federated Sequential Recommender Systems (FedSeqRecs), in which a public sequential recommender model is shared and frequently transmitted between a central server and clients to achieve collaborative learning. Although these solutions mitigate user privacy to some extent, they present two significant limitations that affect their practical usability: (1) They require a globally shared sequential recommendation model. However, in real-world scenarios, the recommendation model constitutes a critical intellectual property for platform and service providers. Therefore, service providers may be reluctant to disclose their meticulously developed models. (2) The communication costs are high as they correlate with the number of model parameters. This becomes particularly problematic as the current FedSeqRec will be inapplicable when sequential recommendation marches into a large language model era. To overcome the above challenges, this paper proposes a parameter transmission-free federated sequential recommendation framework (PTF-FSR), which ensures both model and data privacy protection to meet the privacy needs of service providers and system users alike. Furthermore, since PTF-FSR only transmits prediction results under privacy protection, which are independent of model sizes, this new federated learning architecture can accommodate more complex and larger sequential recommendation models. Extensive experiments conducted on three widely used recommendation datasets, employing various sequential recommendation models from both ID-based and ID-free paradigms, demonstrate the effectiveness and generalization capability of our proposed framework.
Related papers
- Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
The recommender system (RSRS) addresses both user preference and privacy concerns.
We propose a novel method that incorporates non-uniform gradient descent to improve communication efficiency.
RFRecF's superior robustness compared to diverse baselines.
arXiv Detail & Related papers (2024-11-03T12:10:20Z) - PDC-FRS: Privacy-preserving Data Contribution for Federated Recommender System [15.589541738576528]
Federated recommender systems (FedRecs) have emerged as a popular research direction for protecting users' privacy in on-device recommendations.
In FedRecs, users keep their data locally and only contribute their local collaborative information by uploading model parameters to a central server.
We propose a novel federated recommendation framework, PDC-FRS. Specifically, we design a privacy-preserving data contribution mechanism that allows users to share their data with a differential privacy guarantee.
arXiv Detail & Related papers (2024-09-12T06:13:07Z) - User Consented Federated Recommender System Against Personalized
Attribute Inference Attack [55.24441467292359]
We propose a user-consented federated recommendation system (UC-FedRec) to flexibly satisfy the different privacy needs of users.
UC-FedRec allows users to self-define their privacy preferences to meet various demands and makes recommendations with user consent.
arXiv Detail & Related papers (2023-12-23T09:44:57Z) - A Collaborative Filtering-Based Two Stage Model with Item Dependency for
Course Recommendation [6.258986911617345]
Collaborative Filtering (CF) models are arguably the most successful one due to its high accuracy in recommendation.
This paper extends the usage of CF-based model to the task of course recommendation.
We point out several challenges in applying the existing CF-models to build a course recommendation engine.
arXiv Detail & Related papers (2023-11-01T16:01:00Z) - FedRec+: Enhancing Privacy and Addressing Heterogeneity in Federated
Recommendation Systems [15.463595798992621]
FedRec+ is an ensemble framework for federated recommendation systems.
It enhances privacy and reduces communication costs for edge users.
Experimental results demonstrate the state-of-the-art performance of FedRec+.
arXiv Detail & Related papers (2023-10-31T05:36:53Z) - Efficient Federated Prompt Tuning for Black-box Large Pre-trained Models [62.838689691468666]
We propose Federated Black-Box Prompt Tuning (Fed-BBPT) to optimally harness each local dataset.
Fed-BBPT capitalizes on a central server that aids local users in collaboratively training a prompt generator through regular aggregation.
Relative to extensive fine-tuning, Fed-BBPT proficiently sidesteps memory challenges tied to PTM storage and fine-tuning on local machines.
arXiv Detail & Related papers (2023-10-04T19:30:49Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z) - A Federated Multi-View Deep Learning Framework for Privacy-Preserving
Recommendations [25.484225182093947]
Privacy-preserving recommendations are gaining momentum due to concerns over user privacy and data security.
FedRec algorithms have been proposed to realize personalized privacy-preserving recommendations.
This paper presents FLMV-DSSM, a generic content-based federated multi-view recommendation framework.
arXiv Detail & Related papers (2020-08-25T04:19:40Z) - A Generic Network Compression Framework for Sequential Recommender
Systems [71.81962915192022]
Sequential recommender systems (SRS) have become the key technology in capturing user's dynamic interests and generating high-quality recommendations.
We propose a compressed sequential recommendation framework, termed as CpRec, where two generic model shrinking techniques are employed.
By the extensive ablation studies, we demonstrate that the proposed CpRec can achieve up to 4$sim$8 times compression rates in real-world SRS datasets.
arXiv Detail & Related papers (2020-04-21T08:40:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.