PDC-FRS: Privacy-preserving Data Contribution for Federated Recommender System
- URL: http://arxiv.org/abs/2409.07773v1
- Date: Thu, 12 Sep 2024 06:13:07 GMT
- Title: PDC-FRS: Privacy-preserving Data Contribution for Federated Recommender System
- Authors: Chaoqun Yang, Wei Yuan, Liang Qu, Thanh Tam Nguyen,
- Abstract summary: Federated recommender systems (FedRecs) have emerged as a popular research direction for protecting users' privacy in on-device recommendations.
In FedRecs, users keep their data locally and only contribute their local collaborative information by uploading model parameters to a central server.
We propose a novel federated recommendation framework, PDC-FRS. Specifically, we design a privacy-preserving data contribution mechanism that allows users to share their data with a differential privacy guarantee.
- Score: 15.589541738576528
- License:
- Abstract: Federated recommender systems (FedRecs) have emerged as a popular research direction for protecting users' privacy in on-device recommendations. In FedRecs, users keep their data locally and only contribute their local collaborative information by uploading model parameters to a central server. While this rigid framework protects users' raw data during training, it severely compromises the recommendation model's performance due to the following reasons: (1) Due to the power law distribution nature of user behavior data, individual users have few data points to train a recommendation model, resulting in uploaded model updates that may be far from optimal; (2) As each user's uploaded parameters are learned from local data, which lacks global collaborative information, relying solely on parameter aggregation methods such as FedAvg to fuse global collaborative information may be suboptimal. To bridge this performance gap, we propose a novel federated recommendation framework, PDC-FRS. Specifically, we design a privacy-preserving data contribution mechanism that allows users to share their data with a differential privacy guarantee. Based on the shared but perturbed data, an auxiliary model is trained in parallel with the original federated recommendation process. This auxiliary model enhances FedRec by augmenting each user's local dataset and integrating global collaborative information. To demonstrate the effectiveness of PDC-FRS, we conduct extensive experiments on two widely used recommendation datasets. The empirical results showcase the superiority of PDC-FRS compared to baseline methods.
Related papers
- Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
The recommender system (RSRS) addresses both user preference and privacy concerns.
We propose a novel method that incorporates non-uniform gradient descent to improve communication efficiency.
RFRecF's superior robustness compared to diverse baselines.
arXiv Detail & Related papers (2024-11-03T12:10:20Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - User Consented Federated Recommender System Against Personalized
Attribute Inference Attack [55.24441467292359]
We propose a user-consented federated recommendation system (UC-FedRec) to flexibly satisfy the different privacy needs of users.
UC-FedRec allows users to self-define their privacy preferences to meet various demands and makes recommendations with user consent.
arXiv Detail & Related papers (2023-12-23T09:44:57Z) - FedRec+: Enhancing Privacy and Addressing Heterogeneity in Federated
Recommendation Systems [15.463595798992621]
FedRec+ is an ensemble framework for federated recommendation systems.
It enhances privacy and reduces communication costs for edge users.
Experimental results demonstrate the state-of-the-art performance of FedRec+.
arXiv Detail & Related papers (2023-10-31T05:36:53Z) - Semi-decentralized Federated Ego Graph Learning for Recommendation [58.21409625065663]
We propose a semi-decentralized federated ego graph learning framework for on-device recommendations, named SemiDFEGL.
The proposed framework is model-agnostic, meaning that it could be seamlessly integrated with existing graph neural network-based recommendation methods and privacy protection techniques.
arXiv Detail & Related papers (2023-02-10T03:57:45Z) - FedSkip: Combatting Statistical Heterogeneity with Federated Skip
Aggregation [95.85026305874824]
We introduce a data-driven approach called FedSkip to improve the client optima by periodically skipping federated averaging and scattering local models to the cross devices.
We conduct extensive experiments on a range of datasets to demonstrate that FedSkip achieves much higher accuracy, better aggregation efficiency and competing communication efficiency.
arXiv Detail & Related papers (2022-12-14T13:57:01Z) - FedSPLIT: One-Shot Federated Recommendation System Based on Non-negative
Joint Matrix Factorization and Knowledge Distillation [7.621960305708476]
We present the first unsupervised one-shot federated CF implementation, named FedSPLIT, based on NMF joint factorization.
FedSPLIT can obtain similar results than the state of the art (and even outperform it in certain situations) with a substantial decrease in the number of communications.
arXiv Detail & Related papers (2022-05-04T23:42:14Z) - Multi-Center Federated Learning [62.57229809407692]
This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
arXiv Detail & Related papers (2020-05-03T09:14:31Z) - Practical Privacy Preserving POI Recommendation [26.096197310800328]
We propose a novel Privacy preserving POI Recommendation (PriRec) framework.
PriRec keeps users' private raw data and models in users' own hands, and protects user privacy to a large extent.
We apply PriRec in real-world datasets, and comprehensive experiments demonstrate that, compared with FM, PriRec achieves comparable or even better recommendation accuracy.
arXiv Detail & Related papers (2020-03-05T06:06:40Z) - Federating Recommendations Using Differentially Private Prototypes [16.29544153550663]
We propose a new federated approach to learning global and local private models for recommendation without collecting raw data.
By requiring only two rounds of communication, we both reduce the communication costs and avoid the excessive privacy loss.
We show local adaptation of the global model allows our method to outperform centralized matrix-factorization-based recommender system models.
arXiv Detail & Related papers (2020-03-01T22:21:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.