Recent advancements in computational morphology : A comprehensive survey
- URL: http://arxiv.org/abs/2406.05424v1
- Date: Sat, 8 Jun 2024 10:07:33 GMT
- Title: Recent advancements in computational morphology : A comprehensive survey
- Authors: Jatayu Baxi, Brijesh Bhatt,
- Abstract summary: Computational morphology handles the language processing at the word level.
Morpheme boundary detection, lemmatization, morphological feature tagging, morphological reinflection etc.
- Score: 0.11606731918609076
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computational morphology handles the language processing at the word level. It is one of the foundational tasks in the NLP pipeline for the development of higher level NLP applications. It mainly deals with the processing of words and word forms. Computational Morphology addresses various sub problems such as morpheme boundary detection, lemmatization, morphological feature tagging, morphological reinflection etc. In this paper, we present exhaustive survey of the methods for developing computational morphology related tools. We survey the literature in the chronological order starting from the conventional methods till the recent evolution of deep neural network based approaches. We also review the existing datasets available for this task across the languages. We discuss about the effectiveness of neural model compared with the traditional models and present some unique challenges associated with building the computational morphology tools. We conclude by discussing some recent and open research issues in this field.
Related papers
- Hidden Holes: topological aspects of language models [1.1172147007388977]
We study the evolution of topological structure in GPT based large language models across depth and time during training.
We show that the latter exhibit more topological complexity, with a distinct pattern of changes common to all natural languages but absent from synthetically generated data.
arXiv Detail & Related papers (2024-06-09T14:25:09Z) - Language Evolution with Deep Learning [49.879239655532324]
Computational modeling plays an essential role in the study of language emergence.
It aims to simulate the conditions and learning processes that could trigger the emergence of a structured language.
This chapter explores another class of computational models that have recently revolutionized the field of machine learning: deep learning models.
arXiv Detail & Related papers (2024-03-18T16:52:54Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
State-of-the-art natural language processing (NLP) models are trained on massive training corpora, and report a superlative performance on evaluation datasets.
This survey delves into an important attribute of these datasets: the dialect of a language.
Motivated by the performance degradation of NLP models for dialectic datasets and its implications for the equity of language technologies, we survey past research in NLP for dialects in terms of datasets, and approaches.
arXiv Detail & Related papers (2024-01-11T03:04:38Z) - Modeling Target-Side Morphology in Neural Machine Translation: A
Comparison of Strategies [72.56158036639707]
Morphologically rich languages pose difficulties to machine translation.
A large amount of differently inflected word surface forms entails a larger vocabulary.
Some inflected forms of infrequent terms typically do not appear in the training corpus.
Linguistic agreement requires the system to correctly match the grammatical categories between inflected word forms in the output sentence.
arXiv Detail & Related papers (2022-03-25T10:13:20Z) - Morphology Without Borders: Clause-Level Morphological Annotation [8.559428282730021]
We propose to view morphology as a clause-level phenomenon, rather than word-level.
We deliver a novel dataset for clause-level morphology covering 4 typologically-different languages: English, German, Turkish and Hebrew.
Our experiments show that the clause-level tasks are substantially harder than the respective word-level tasks, while having comparable complexity across languages.
arXiv Detail & Related papers (2022-02-25T17:20:28Z) - Interpreting Deep Learning Models in Natural Language Processing: A
Review [33.80537635077772]
A long-standing criticism against neural network models is the lack of interpretability.
In this survey, we provide a comprehensive review of various interpretation methods for neural models in NLP.
arXiv Detail & Related papers (2021-10-20T10:17:04Z) - Computational Morphology with Neural Network Approaches [5.913574957971709]
Neural network approaches have been applied to computational morphology with great success.
This paper starts with a brief introduction to computational morphology, followed by a review of recent work on computational morphology with neural network approaches.
We will analyze the advantages and problems of neural network approaches to computational morphology, and point out some directions to be explored by future research and study.
arXiv Detail & Related papers (2021-05-19T21:17:53Z) - Emergence of Separable Manifolds in Deep Language Representations [26.002842878797765]
Deep neural networks (DNNs) have shown much empirical success in solving perceptual tasks across various cognitive modalities.
Recent studies report considerable similarities between representations extracted from task-optimized DNNs and neural populations in the brain.
DNNs have subsequently become a popular model class to infer computational principles underlying complex cognitive functions.
arXiv Detail & Related papers (2020-06-01T17:23:44Z) - Evaluating Transformer-Based Multilingual Text Classification [55.53547556060537]
We argue that NLP tools perform unequally across languages with different syntactic and morphological structures.
We calculate word order and morphological similarity indices to aid our empirical study.
arXiv Detail & Related papers (2020-04-29T03:34:53Z) - A Simple Joint Model for Improved Contextual Neural Lemmatization [60.802451210656805]
We present a simple joint neural model for lemmatization and morphological tagging that achieves state-of-the-art results on 20 languages.
Our paper describes the model in addition to training and decoding procedures.
arXiv Detail & Related papers (2019-04-04T02:03:19Z) - Paradigm Completion for Derivational Morphology [48.405826282007]
derivational morphology has been an overlooked problem in NLP.
We introduce the task of derivational paradigm completion as a parallel to inflectional paradigm completion.
We show that state-of-the-art neural models are able to learn a range of derivation patterns, and outperform a non-neural baseline by 16.4%.
arXiv Detail & Related papers (2017-08-30T07:55:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.