論文の概要: A Novel Generative AI-Based Framework for Anomaly Detection in Multicast Messages in Smart Grid Communications
- arxiv url: http://arxiv.org/abs/2406.05472v1
- Date: Sat, 8 Jun 2024 13:28:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 19:35:37.892219
- Title: A Novel Generative AI-Based Framework for Anomaly Detection in Multicast Messages in Smart Grid Communications
- Title(参考訳): スマートグリッド通信におけるマルチキャストメッセージにおける異常検出のためのAIに基づく新しい生成フレームワーク
- Authors: Aydin Zaboli, Seong Lok Choi, Tai-Jin Song, Junho Hong,
- Abstract要約: デジタル変電所におけるサイバーセキュリティ侵害は、電力系統の運用の安定性と信頼性に重大な課題をもたらす。
本稿では,マルチキャストメッセージのデータセットにおける異常検出(AD)のためのタスク指向対話システムを提案する。
潜在的なエラーが低く、人間の推奨するサイバーセキュリティガイドラインを考えるプロセスよりもスケーラビリティと適応性が向上します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cybersecurity breaches in digital substations can pose significant challenges to the stability and reliability of power system operations. To address these challenges, defense and mitigation techniques are required. Identifying and detecting anomalies in information and communication technology (ICT) is crucial to ensure secure device interactions within digital substations. This paper proposes a task-oriented dialogue (ToD) system for anomaly detection (AD) in datasets of multicast messages e.g., generic object oriented substation event (GOOSE) and sampled value (SV) in digital substations using large language models (LLMs). This model has a lower potential error and better scalability and adaptability than a process that considers the cybersecurity guidelines recommended by humans, known as the human-in-the-loop (HITL) process. Also, this methodology significantly reduces the effort required when addressing new cyber threats or anomalies compared with machine learning (ML) techniques, since it leaves the models complexity and precision unaffected and offers a faster implementation. These findings present a comparative assessment, conducted utilizing standard and advanced performance evaluation metrics for the proposed AD framework and the HITL process. To generate and extract datasets of IEC 61850 communications, a hardware-in-the-loop (HIL) testbed was employed.
- Abstract(参考訳): デジタル変電所におけるサイバーセキュリティ違反は、電力系統の運用の安定性と信頼性に重大な課題をもたらす可能性がある。
これらの課題に対処するためには、防御と緩和技術が必要である。
情報通信技術(ICT)における異常の特定と検出は,デジタルサブステーション内でのセキュアなデバイスインタラクションの確保に不可欠である。
本稿では,大規模言語モデル(LLM)を用いたデジタルサブステーションにおけるマルチキャストメッセージ,汎用オブジェクト指向サブステーションイベント(GOOSE)およびサンプル値(SV)のデータセットにおける異常検出(AD)のためのタスク指向対話(ToD)システムを提案する。
このモデルは、Human-in-the-loop(HITL)プロセスとして知られる、人間が推奨するサイバーセキュリティガイドラインを考えるプロセスよりも、潜在的なエラーやスケーラビリティ、適応性が低い。
また、この手法は、モデルの複雑さと精度に影響を与えず、より高速な実装を提供するため、機械学習(ML)技術と比較して、新しいサイバー脅威や異常に対処するために必要な労力を大幅に削減する。
これらの結果から,ADフレームワークとHITLプロセスの標準および高度な性能評価指標を用いて比較評価を行った。
IEC 61850通信のデータセットの生成と抽出のために、ハードウェア・イン・ザ・ループ(HIL)テストベッドが採用された。
関連論文リスト
- Federated PCA on Grassmann Manifold for IoT Anomaly Detection [23.340237814344384]
従来の機械学習ベースの侵入検知システム(ML-IDS)にはラベル付きデータの要求のような制限がある。
AutoEncodersやGenerative Adversarial Networks (GAN)のような最近の教師なしML-IDSアプローチは代替ソリューションを提供する。
本稿では,分散データセットの共通表現を学習するフェデレーション型非教師付き異常検出フレームワークであるFedPCAを提案する。
論文 参考訳(メタデータ) (2024-07-10T07:23:21Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Scaling #DNN-Verification Tools with Efficient Bound Propagation and
Parallel Computing [57.49021927832259]
ディープニューラルネットワーク(DNN)は多くのシナリオで異常な結果を示した強力なツールです。
しかし、それらの複雑な設計と透明性の欠如は、現実世界のアプリケーションに適用する際の安全性上の懸念を提起する。
DNNの形式的検証(FV)は、安全面の証明可能な保証を提供する貴重なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-12-10T13:51:25Z) - ChatGPT and Other Large Language Models for Cybersecurity of Smart Grid Applications [0.0]
本稿では, IEC 61850 ベースのディジタルサブステーション通信におけるサイバーセキュリティのための大規模言語モデル (LLM) である ChatGPT を提案する。
ハードウェア・イン・ザ・ループ(HIL)テストベッドを使用して、IEC 61850通信のデータセットを生成し、抽出する。
論文 参考訳(メタデータ) (2023-11-09T15:50:44Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - Few-shot Weakly-supervised Cybersecurity Anomaly Detection [1.179179628317559]
本稿では,既存の弱教師付きディープラーニング異常検出フレームワークの強化を提案する。
このフレームワークには、データ拡張、表現学習、順序回帰が含まれている。
そして、3つのベンチマークデータセット上で実装したフレームワークの性能を評価した。
論文 参考訳(メタデータ) (2023-04-15T04:37:54Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - Inter-Domain Fusion for Enhanced Intrusion Detection in Power Systems:
An Evidence Theoretic and Meta-Heuristic Approach [0.0]
ICSネットワークにおけるIDSによる不正な警告は、経済的および運用上の重大な損害をもたらす可能性がある。
本研究は,CPS電力系統における誤警報の事前分布を伴わずに不確実性に対処し,誤警報を低減する手法を提案する。
論文 参考訳(メタデータ) (2021-11-20T00:05:39Z) - Cross-Layered Distributed Data-driven Framework For Enhanced Smart Grid
Cyber-Physical Security [3.8237485961848128]
Adaptive Statisticsを使用したクロスレイヤアンサンブルCorrDetが紹介される。
故障したSG測定データの検出と、ネットワーク間時間と送信遅延の一貫性の欠如を統合する。
その結果,CECD-ASは複数のFalse Data Injection, Denial of Service (DoS) および Man In The Middle (MITM) 攻撃を高いF1スコアで検出できることがわかった。
論文 参考訳(メタデータ) (2021-11-10T00:00:51Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - On the benefits of robust models in modulation recognition [53.391095789289736]
畳み込み層を用いたディープニューラルネットワーク(DNN)は、通信における多くのタスクにおいて最先端である。
画像分類のような他の領域では、DNNは敵の摂動に弱いことが示されている。
最新モデルの堅牢性をテストするための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-27T19:58:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。