論文の概要: AI-in-the-Loop Sensing and Communication Joint Design for Edge Intelligence
- arxiv url: http://arxiv.org/abs/2502.10203v1
- Date: Fri, 14 Feb 2025 14:56:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 18:06:34.009242
- Title: AI-in-the-Loop Sensing and Communication Joint Design for Edge Intelligence
- Title(参考訳): エッジインテリジェンスのためのAI-in-the-Loop Sensing and Communication Joint Design
- Authors: Zhijie Cai, Xiaowen Cao, Xu Chen, Yuanhao Cui, Guangxu Zhu, Kaibin Huang, Shuguang Cui,
- Abstract要約: 本稿では,AI-in-the-loopジョイントセンシングと通信によるエッジインテリジェンス向上のためのフレームワークを提案する。
私たちの研究の重要な貢献は、バリデーション損失とシステムのチューニング可能なパラメータとの間に明確な関係を確立することです。
提案手法は, 通信エネルギー消費を最大77%削減し, 試料数で測定した検知コストを最大52%削減する。
- 参考スコア(独自算出の注目度): 65.29835430845893
- License:
- Abstract: Recent breakthroughs in artificial intelligence (AI), wireless communications, and sensing technologies have accelerated the evolution of edge intelligence. However, conventional systems still grapple with issues such as low communication efficiency, redundant data acquisition, and poor model generalization. To overcome these challenges, we propose an innovative framework that enhances edge intelligence through AI-in-the-loop joint sensing and communication (JSAC). This framework features an AI-driven closed-loop control architecture that jointly optimizes system resources, thereby delivering superior system-level performance. A key contribution of our work is establishing an explicit relationship between validation loss and the system's tunable parameters. This insight enables dynamic reduction of the generalization error through AI-driven closed-loop control. Specifically, for sensing control, we introduce an adaptive data collection strategy based on gradient importance sampling, allowing edge devices to autonomously decide when to terminate data acquisition and how to allocate sample weights based on real-time model feedback. For communication control, drawing inspiration from stochastic gradient Langevin dynamics (SGLD), our joint optimization of transmission power and batch size converts channel and data noise into gradient perturbations that help mitigate overfitting. Experimental evaluations demonstrate that our framework reduces communication energy consumption by up to 77 percent and sensing costs measured by the number of collected samples by up to 52 percent while significantly improving model generalization -- with up to 58 percent reductions of the final validation loss. It validates that the proposed scheme can harvest the mutual benefit of AI and JSAC systems by incorporating the model itself into the control loop of the system.
- Abstract(参考訳): 人工知能(AI)、無線通信、センシング技術の最近の進歩は、エッジインテリジェンスの発展を加速させている。
しかし、従来のシステムは、通信効率の低下、冗長なデータ取得、モデル一般化の貧弱といった問題に悩まされている。
これらの課題を克服するために、我々は、AI-in-the-loop joint sensor and communication (JSAC) を通じてエッジインテリジェンスを強化する革新的なフレームワークを提案する。
このフレームワークはAI駆動のクローズドループ制御アーキテクチャを備え、システムリソースを協調的に最適化し、システムレベルのパフォーマンスを向上する。
私たちの研究の重要な貢献は、バリデーション損失とシステムのチューニング可能なパラメータとの間に明確な関係を確立することです。
この洞察はAI駆動閉ループ制御による一般化誤差の動的低減を可能にする。
具体的には,データ取得を終了するタイミングと,リアルタイムモデルフィードバックに基づいてサンプル重量を割り当てる方法について,エッジデバイスが自律的に決定できるような,勾配強調サンプリングに基づく適応型データ収集戦略を導入する。
通信制御では、確率勾配ランゲヴィンダイナミクス(SGLD)からインスピレーションを得て、伝送電力とバッチサイズを共同で最適化することで、チャネルとデータノイズを勾配摂動に変換し、オーバーフィッティングを緩和する。
実験により,本フレームワークの通信エネルギー消費を最大77%削減し,収集サンプル数で測定した検知コストを最大52%削減し,モデル一般化を大幅に改善し,最終検証損失を最大58%削減した。
提案手法は,モデル自体をシステムの制御ループに組み込むことで,AIとJSACシステムの相互利益を得られることを示す。
関連論文リスト
- Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
異常と欠落したデータは、産業応用における厄介な問題を構成する。
ディープラーニングによる異常検出が重要な方向として現れている。
エッジデバイスで収集されたデータは、ユーザのプライバシを含む。
論文 参考訳(メタデータ) (2024-11-06T15:38:31Z) - Effective Communication with Dynamic Feature Compression [25.150266946722]
本研究では,タスクを制御するロボットに対して,観察者が知覚データを伝達しなければならないプロトタイパルシステムについて検討する。
本稿では, 量子化レベルを動的に適応させるために, アンサンブルベクトル量子化変分オートエンコーダ(VQ-VAE)を符号化し, 深層強化学習(DRL)エージェントを訓練する。
我々は、よく知られたCartPole参照制御問題に対して提案手法を検証し、大幅な性能向上を得た。
論文 参考訳(メタデータ) (2024-01-29T15:35:05Z) - Offloading and Quality Control for AI Generated Content Services in 6G Mobile Edge Computing Networks [18.723955271182007]
本稿では, 逆拡散段階における拡散モデルのオフロード決定, 計算時間, 拡散ステップに対する共同最適化アルゴリズムを提案する。
実験結果から,提案アルゴリズムはベースラインよりも優れた継手最適化性能が得られることが示された。
論文 参考訳(メタデータ) (2023-12-11T08:36:27Z) - Joint Sensing, Communication, and AI: A Trifecta for Resilient THz User
Experiences [118.91584633024907]
テラヘルツ(THz)無線システムに対する拡張現実(XR)体験を最適化するために、新しい共同センシング、通信、人工知能(AI)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-29T00:39:50Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - Semantic and Effective Communication for Remote Control Tasks with
Dynamic Feature Compression [23.36744348465991]
ロボットの群れの調整と産業システムのリモート無線制御は、5Gおよびそれ以上のシステムの主要なユースケースである。
本研究では,タスクを制御するアクターに知覚データを伝達しなければならないプロトタイパルシステムについて考察する。
本稿では,量子化レベルを動的に適応させるために,アンサンブルベクトル量子化変分オートエンコーダ(VQ-VAE)を符号化し,深層強化学習(DRL)エージェントを訓練する。
論文 参考訳(メタデータ) (2023-01-14T11:43:56Z) - Deep Learning for Wireless Networked Systems: a joint
Estimation-Control-Scheduling Approach [47.29474858956844]
ワイヤレスネットワーク制御システム(Wireless Networked Control System, WNCS)は、無線通信を介してセンサ、コントローラ、アクチュエータを接続する技術であり、産業用 4.0 時代において、高度にスケーラブルで低コストな制御システムの展開を可能にする技術である。
WNCSにおける制御と通信の密接な相互作用にもかかわらず、既存のほとんどの研究は分離設計アプローチを採用している。
モデルフリーデータとモデルベースデータの両方を利用する制御と最適化のための,DRLに基づく新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-03T01:29:40Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
本稿では,AIモデルの分割推論と統合センシング通信(ISAC)を併用した,新しいマルチインテリジェントエッジ人工レイテンシ(AI)システムについて検討する。
推定精度は近似的だが抽出可能な計量、すなわち判別利得を用いて測定する。
論文 参考訳(メタデータ) (2022-07-03T06:57:07Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。