論文の概要: HDRT: A Large-Scale Dataset for Infrared-Guided HDR Imaging
- arxiv url: http://arxiv.org/abs/2406.05475v2
- Date: Mon, 10 Mar 2025 10:17:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 19:15:46.706193
- Title: HDRT: A Large-Scale Dataset for Infrared-Guided HDR Imaging
- Title(参考訳): HDRT:赤外線誘導HDRイメージングのための大規模データセット
- Authors: Jingchao Peng, Thomas Bashford-Rogers, Francesco Banterle, Haitao Zhao, Kurt Debattista,
- Abstract要約: 我々はHDRと熱赤外画像からなる最初の包括的データセットを紹介する。
HDRTデータセットは、8つの都市で6ヶ月にわたって3つのシーズンで5万枚の画像で構成されている。
我々は、赤外線とSDRコンテンツを融合してHDR画像を生成する新しいディープニューラルネットワークHDRTNetを提案する。
- 参考スコア(独自算出の注目度): 8.208995723545502
- License:
- Abstract: Capturing images with enough details to solve imaging tasks is a long-standing challenge in imaging, particularly due to the limitations of standard dynamic range (SDR) images which often lose details in underexposed or overexposed regions. Traditional high dynamic range (HDR) methods, like multi-exposure fusion or inverse tone mapping, struggle with ghosting and incomplete data reconstruction. Infrared (IR) imaging offers a unique advantage by being less affected by lighting conditions, providing consistent detail capture regardless of visible light intensity. In this paper, we introduce the HDRT dataset, the first comprehensive dataset that consists of HDR and thermal IR images. The HDRT dataset comprises 50,000 images captured across three seasons over six months in eight cities, providing a diverse range of lighting conditions and environmental contexts. Leveraging this dataset, we propose HDRTNet, a novel deep neural method that fuses IR and SDR content to generate HDR images. Extensive experiments validate HDRTNet against the state-of-the-art, showing substantial quantitative and qualitative quality improvements. The HDRT dataset not only advances IR-guided HDR imaging but also offers significant potential for broader research in HDR imaging, multi-modal fusion, domain transfer, and beyond. The dataset is available at https://huggingface.co/datasets/jingchao-peng/HDRTDataset.
- Abstract(参考訳): 撮像タスクを解くのに十分な詳細で画像をキャプチャすることは、画像の長きにわたる課題であり、特に、露出不足や露出過多の領域で詳細が失われる標準的なダイナミックレンジ(SDR)画像の制限のためである。
従来のハイダイナミックレンジ法(HDR)では、マルチ露光融合や逆トーンマッピング、ゴースト処理と不完全なデータ再構成に苦労する。
赤外線(IR)イメージングは、照明条件の影響を受けにくく、可視光強度によらず、一貫した細部を捉えられるというユニークな利点がある。
本稿では,HDRと熱赤外画像からなる最初の包括的データセットであるHDRTデータセットを紹介する。
HDRTデータセットは8つの都市で6ヶ月にわたって3つの季節にわたって5万枚の画像を撮影し、様々な照明条件と環境条件を提供する。
このデータセットを活用することで、赤外線とSDRコンテンツを融合してHDR画像を生成する、新しいディープニューラルネットワークであるHDRTNetを提案する。
大規模な実験ではHDRTNetが最先端技術に対して有効であり、相当な量的および質的な品質改善を示している。
HDRTデータセットは、赤外線誘導HDRイメージングを前進させるだけでなく、HDRイメージング、マルチモーダル融合、ドメイン転送などの幅広い研究にも大きな可能性を秘めている。
データセットはhttps://huggingface.co/datasets/jingchao-peng/HDRTDatasetで公開されている。
関連論文リスト
- CapHDR2IR: Caption-Driven Transfer from Visible Light to Infrared Domain [7.007302908953179]
赤外線(IR)イメージングは、極端光条件下でコンテンツをキャプチャするユニークな能力のため、いくつかの分野で利点がある。
代替として、可視光は赤外線画像の合成に使用できるが、それによって画像の細部への忠実さが失われ、シーンの文脈的認識の欠如により不整合が生じる。
論文 参考訳(メタデータ) (2024-11-25T12:23:14Z) - Generating Content for HDR Deghosting from Frequency View [56.103761824603644]
近年の拡散モデル (DM) はHDRイメージング分野に導入されている。
DMは画像全体を推定するために大きなモデルで広範囲の反復を必要とする。
ゴーストフリーHDRイメージングのための低周波数対応拡散(LF-Diff)モデルを提案する。
論文 参考訳(メタデータ) (2024-04-01T01:32:11Z) - Self-Supervised High Dynamic Range Imaging with Multi-Exposure Images in
Dynamic Scenes [58.66427721308464]
Selfは、訓練中にダイナミックなマルチ露光画像のみを必要とする自己教師型再構成手法である。
Selfは最先端の自己管理手法に対して優れた結果を出し、教師付き手法に匹敵するパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-10-03T07:10:49Z) - SMAE: Few-shot Learning for HDR Deghosting with Saturation-Aware Masked
Autoencoders [97.64072440883392]
そこで本研究では,SSHDRと呼ばれる2段階の訓練を通した短距離HDRイメージングを実現するための,新しい半教師付きアプローチを提案する。
以前の方法とは異なり、コンテンツを直接回復し、ゴーストを同時に除去することは、最適に達成することが難しい。
実験により、SSHDRは異なるデータセットの内外における定量的かつ定性的に最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-04-14T03:42:51Z) - GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild [74.52723408793648]
そこで本研究では,HDR画像の生成モデルを構築するための第1の手法について述べる。
鍵となる考え方は、GAN(Generative Adversarial Network)を訓練して、様々な露光下でLDRに投影された場合、実際のLDR画像と区別できないHDR画像を生成することである。
実験の結果,GlowGANはランドスケープ,雷,窓など多くの難題において,光現実的HDR画像を合成できることがわかった。
論文 参考訳(メタデータ) (2022-11-22T15:42:08Z) - Self-supervised HDR Imaging from Motion and Exposure Cues [14.57046548797279]
本稿では,学習可能なHDR推定のための新たな自己教師型アプローチを提案する。
実験の結果,提案手法を用いて訓練したHDRモデルは,全監督下で訓練したモデルと性能の競争力を発揮することがわかった。
論文 参考訳(メタデータ) (2022-03-23T10:22:03Z) - FlexHDR: Modelling Alignment and Exposure Uncertainties for Flexible HDR
Imaging [0.9185931275245008]
高品質なHDR結果を生成するためにアライメントと露出の不確かさをモデル化する新しいHDRイメージング技術を提案する。
本研究では,HDRを意識した不確実性を考慮したアライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・
実験結果から,本手法は最先端の高画質HDR画像を最大0.8dBPSNRで生成できることがわかった。
論文 参考訳(メタデータ) (2022-01-07T14:27:17Z) - HDR-NeRF: High Dynamic Range Neural Radiance Fields [70.80920996881113]
我々は、低ダイナミックレンジ(LDR)ビューの集合からHDR放射界を異なる露光で復元するために、高ダイナミックレンジニューラルレイディアンス場(-NeRF)を提案する。
異なる露出下で、新しいHDRビューと新しいLDRビューの両方を生成することができる。
論文 参考訳(メタデータ) (2021-11-29T11:06:39Z) - Deep Snapshot HDR Imaging Using Multi-Exposure Color Filter Array [14.5106375775521]
本稿では,有効損失と入力データの正規化を同時に実現する輝度正規化の考え方を紹介する。
2つの公開HDR画像データセットを用いた実験結果から,我々のフレームワークが他のスナップショット手法より優れていることが示された。
論文 参考訳(メタデータ) (2020-11-20T06:31:37Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
マルチ露光LDR画像からHDR画像を合成するための新しいGANモデルHDR-GANを提案する。
本手法は,敵対学習を取り入れることで,欠落したコンテンツのある領域に忠実な情報を生成することができる。
論文 参考訳(メタデータ) (2020-07-03T11:42:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。