Prioritizing Potential Wetland Areas via Region-to-Region Knowledge Transfer and Adaptive Propagation
- URL: http://arxiv.org/abs/2406.05578v1
- Date: Sat, 08 Jun 2024 21:25:24 GMT
- Title: Prioritizing Potential Wetland Areas via Region-to-Region Knowledge Transfer and Adaptive Propagation
- Authors: Yoonhyuk Choi, Reepal Shah, John Sabo, K. Selcuk Candan, Huan Liu,
- Abstract summary: Wetlands are important to communities, offering benefits ranging from water purification to flood protection to recreation and tourism.
Data-driven solutions are feasible, but are complicated by significant data sparsity due to the low proportion of wetlands in many areas of interest in the southwestern US.
This makes it hard to develop data-driven models that can help guide the identification of additional wetland areas.
- Score: 9.99241578238986
- License:
- Abstract: Wetlands are important to communities, offering benefits ranging from water purification, and flood protection to recreation and tourism. Therefore, identifying and prioritizing potential wetland areas is a critical decision problem. While data-driven solutions are feasible, this is complicated by significant data sparsity due to the low proportion of wetlands (3-6\%) in many areas of interest in the southwestern US. This makes it hard to develop data-driven models that can help guide the identification of additional wetland areas. To solve this limitation, we propose two strategies: (1) The first of these is knowledge transfer from regions with rich wetlands (such as the Eastern US) to sparser regions (such as the Southwestern area with few wetlands). Recognizing that these regions are likely to be very different from each other in terms of soil characteristics, population distribution, and land use, we propose a domain disentanglement strategy that identifies and transfers only the applicable aspects of the learned model. (2) We complement this with a spatial data enrichment strategy that relies on an adaptive propagation mechanism. This mechanism differentiates between node pairs that have positive and negative impacts on each other for Graph Neural Networks (GNNs). To summarize, given two spatial cells belonging to different regions, we identify domain-specific and domain-shareable features, and, for each region, we rely on adaptive propagation to enrich features with the features of surrounding cells. We conduct rigorous experiments to substantiate our proposed method's effectiveness, robustness, and scalability compared to state-of-the-art baselines. Additionally, an ablation study demonstrates that each module is essential in prioritizing potential wetlands, which justifies our assumption.
Related papers
- Learning Geospatial Region Embedding with Heterogeneous Graph [16.864563545518124]
We present GeoHG, an effective heterogeneous graph structure for learning comprehensive region embeddings for various downstream tasks.
Specifically, we tailor satellite image representation learning through geo-entity segmentation and point-of-interest (POI) integration for expressive intra-regional features.
GeoHG unifies informative spatial interdependencies and socio-environmental attributes into a powerful heterogeneous graph to encourage explicit modeling of higher-order inter-regional relationships.
arXiv Detail & Related papers (2024-05-23T03:19:02Z) - Cross Domain Early Crop Mapping using CropSTGAN [12.271756709807898]
This paper introduces the Crop Mapping Spectral-temporal Generative Adrial Neural Network (CropSTGAN)
CropSTGAN learns to transform the target domain's spectral features to those of the source domain, effectively bridging large dissimilarities.
In experiments, CropSTGAN is benchmarked against various state-of-the-art (SOTA) methods.
arXiv Detail & Related papers (2024-01-15T00:27:41Z) - GIVL: Improving Geographical Inclusivity of Vision-Language Models with
Pre-Training Methods [62.076647211744564]
We propose GIVL, a Geographically Inclusive Vision-and-Language Pre-trained model.
There are two attributes of geo-diverse visual concepts which can help to learn geo-diverse knowledge: 1) concepts under similar categories have unique knowledge and visual characteristics, 2) concepts with similar visual features may fall in completely different categories.
Compared with similar-size models pre-trained with similar scale of data, GIVL achieves state-of-the-art (SOTA) and more balanced performance on geo-diverse V&L tasks.
arXiv Detail & Related papers (2023-01-05T03:43:45Z) - Estimating Geographic Spillover Effects of COVID-19 Policies From
Large-Scale Mobility Networks [54.90772000796717]
County-level policies provide flexibility between regions, but may become less effective in the presence of geographic spillovers.
We estimate spillovers using a mobility network with billions of timestamped edges.
We find that county-level restrictions are only 54% as effective as statewide restrictions at reducing mobility.
arXiv Detail & Related papers (2022-12-12T20:16:54Z) - Urban Region Profiling via A Multi-Graph Representation Learning
Framework [0.0]
We propose a multi-graph representative learning framework, called Region2Vec, for urban region profiling.
Experiments on real-world datasets show that Region2Vec can be employed in three applications and outperforms all state-of-the-art baselines.
arXiv Detail & Related papers (2022-02-04T11:05:37Z) - Coarse to Fine: Domain Adaptive Crowd Counting via Adversarial Scoring
Network [58.05473757538834]
This paper proposes a novel adversarial scoring network (ASNet) to bridge the gap across domains from coarse to fine granularity.
Three sets of migration experiments show that the proposed methods achieve state-of-the-art counting performance.
arXiv Detail & Related papers (2021-07-27T14:47:24Z) - Domain-Adversarial Training of Self-Attention Based Networks for Land
Cover Classification using Multi-temporal Sentinel-2 Satellite Imagery [0.0]
Most practical applications cannot rely on labeled data, and in the field, surveys are a time consuming solution.
In this paper, we investigate adversarial training of deep neural networks to bridge the domain discrepancy between distinct geographical zones.
arXiv Detail & Related papers (2021-04-01T15:45:17Z) - Domain Adaptation for Learning Generator from Paired Few-Shot Data [72.04430033118426]
We propose a Paired Few-shot GAN (PFS-GAN) model for learning generators with sufficient source data and a few target data.
Our method has better quantitative and qualitative results on the generated target-domain data with higher diversity in comparison to several baselines.
arXiv Detail & Related papers (2021-02-25T10:11:44Z) - Adversarial Graph Representation Adaptation for Cross-Domain Facial
Expression Recognition [86.25926461936412]
We propose a novel Adrialversa Graph Representation Adaptation (AGRA) framework that unifies graph representation propagation with adversarial learning for cross-domain holistic-local feature co-adaptation.
We conduct extensive and fair experiments on several popular benchmarks and show that the proposed AGRA framework achieves superior performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2020-08-03T13:27:24Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z) - Meta-Learning for Few-Shot Land Cover Classification [3.8529010979482123]
We evaluate the model-agnostic meta-learning (MAML) algorithm on classification and segmentation tasks.
We find that few-shot model adaptation outperforms pre-training with regular gradient descent.
This indicates that model optimization with meta-learning may benefit tasks in the Earth sciences.
arXiv Detail & Related papers (2020-04-28T09:42:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.