Learning Geospatial Region Embedding with Heterogeneous Graph
- URL: http://arxiv.org/abs/2405.14135v1
- Date: Thu, 23 May 2024 03:19:02 GMT
- Title: Learning Geospatial Region Embedding with Heterogeneous Graph
- Authors: Xingchen Zou, Jiani Huang, Xixuan Hao, Yuhao Yang, Haomin Wen, Yibo Yan, Chao Huang, Yuxuan Liang,
- Abstract summary: We present GeoHG, an effective heterogeneous graph structure for learning comprehensive region embeddings for various downstream tasks.
Specifically, we tailor satellite image representation learning through geo-entity segmentation and point-of-interest (POI) integration for expressive intra-regional features.
GeoHG unifies informative spatial interdependencies and socio-environmental attributes into a powerful heterogeneous graph to encourage explicit modeling of higher-order inter-regional relationships.
- Score: 16.864563545518124
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Learning effective geospatial embeddings is crucial for a series of geospatial applications such as city analytics and earth monitoring. However, learning comprehensive region representations presents two significant challenges: first, the deficiency of effective intra-region feature representation; and second, the difficulty of learning from intricate inter-region dependencies. In this paper, we present GeoHG, an effective heterogeneous graph structure for learning comprehensive region embeddings for various downstream tasks. Specifically, we tailor satellite image representation learning through geo-entity segmentation and point-of-interest (POI) integration for expressive intra-regional features. Furthermore, GeoHG unifies informative spatial interdependencies and socio-environmental attributes into a powerful heterogeneous graph to encourage explicit modeling of higher-order inter-regional relationships. The intra-regional features and inter-regional correlations are seamlessly integrated by a model-agnostic graph learning framework for diverse downstream tasks. Extensive experiments demonstrate the effectiveness of GeoHG in geo-prediction tasks compared to existing methods, even under extreme data scarcity (with just 5% of training data). With interpretable region representations, GeoHG exhibits strong generalization capabilities across regions. We will release code and data upon paper notification.
Related papers
- G-OSR: A Comprehensive Benchmark for Graph Open-Set Recognition [54.45837774534411]
We introduce textbfG-OSR, a benchmark for evaluating Graph Open-Set Recognition (GOSR) methods at both the node and graph levels.
Results offer critical insights into the generalizability and limitations of current GOSR methods.
arXiv Detail & Related papers (2025-03-01T13:02:47Z) - An Interpretable Implicit-Based Approach for Modeling Local Spatial Effects: A Case Study of Global Gross Primary Productivity [9.352810748734157]
In Earth sciences, unobserved factors exhibit non-stationary distributions, causing the relationships between features and targets to display spatial heterogeneity.
In geographic machine learning tasks, conventional statistical learning methods often struggle to capture spatial heterogeneity.
We propose a novel perspective - that is, simultaneously modeling common features across different locations alongside spatial differences using deep neural networks.
arXiv Detail & Related papers (2025-02-10T05:44:54Z) - RegionGCN: Spatial-Heterogeneity-Aware Graph Convolutional Networks [8.132751508556078]
We propose to model spatial process heterogeneity at the regional level rather than at the individual level.
Our proposed spatial-heterogeneity-aware graph convolutional network, named RegionGCN, is applied to the spatial prediction of county-level vote share in the 2016 US presidential election.
arXiv Detail & Related papers (2025-01-29T12:09:01Z) - GeoConformal prediction: a model-agnostic framework of measuring the uncertainty of spatial prediction [1.8127783865655926]
We propose a model-agnostic uncertainty assessment method called GeoConformal Prediction.
We apply it to two classic spatial prediction cases, spatial regression and spatial prediction.
We find that GeoConformal holds potential not only for geographic knowledge discovery but also for guiding the design of future GeoAI models.
arXiv Detail & Related papers (2024-12-05T18:40:06Z) - GeoAI-Enhanced Community Detection on Spatial Networks with Graph Deep Learning [2.3646445757741064]
This study proposes a family of GeoAI-enhanced unsupervised community detection methods called region2vec.
The proposed GeoAI-based methods are compared with multiple baselines and perform the best when one wants to maximize node attribute similarity and spatial interaction intensity simultaneously.
It is further applied in the shortage area delineation problem in public health and demonstrates its promise in regionalization problems.
arXiv Detail & Related papers (2024-11-23T03:09:34Z) - Geometric Feature Enhanced Knowledge Graph Embedding and Spatial Reasoning [8.561588656662419]
Geospatial Knowledge Graphs (GeoKGs) model geoentities and spatial relationships in an interconnected manner.
Existing methods for mining and reasoning from GeoKGs, such as popular knowledge graph embedding (KGE) techniques, lack geographic awareness.
This study aims to enhance general-purpose KGE by developing new strategies and integrating geometric features of spatial relations.
arXiv Detail & Related papers (2024-10-24T00:53:48Z) - Combining Observational Data and Language for Species Range Estimation [63.65684199946094]
We propose a novel approach combining millions of citizen science species observations with textual descriptions from Wikipedia.
Our framework maps locations, species, and text descriptions into a common space, enabling zero-shot range estimation from textual descriptions.
Our approach also acts as a strong prior when combined with observational data, resulting in more accurate range estimation with less data.
arXiv Detail & Related papers (2024-10-14T17:22:55Z) - Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework [51.26566634946208]
We introduce smileGeo, a novel visual geo-localization framework.
By inter-agent communication, smileGeo integrates the inherent knowledge of these agents with additional retrieved information.
Results show that our approach significantly outperforms current state-of-the-art methods.
arXiv Detail & Related papers (2024-08-21T03:31:30Z) - Unveiling Optimal SDG Pathways: An Innovative Approach Leveraging Graph
Pruning and Intent Graph for Effective Recommendations [12.444301825257071]
This paper proposes a method called User Graph after Pruning and Intent Graph (UGPIG)
Firstly, we utilize the high-density linking capability of the pruned User Graph to address the issue of spatial neglect in recommendation algorithms.
Secondly, we construct an Intent Graph by incorporating the intent network, which captures the preferences for attributes including environmental elements of target regions.
arXiv Detail & Related papers (2023-09-21T02:32:17Z) - Geo-Encoder: A Chunk-Argument Bi-Encoder Framework for Chinese
Geographic Re-Ranking [61.60169764507917]
Chinese geographic re-ranking task aims to find the most relevant addresses among retrieved candidates.
We propose an innovative framework, namely Geo-Encoder, to more effectively integrate Chinese geographical semantics into re-ranking pipelines.
arXiv Detail & Related papers (2023-09-04T13:44:50Z) - Spatial Heterophily Aware Graph Neural Networks [35.95622680895503]
Graph Neural Networks (GNNs) have been broadly applied in many urban applications upon formulating a city as an urban graph whose nodes are urban objects like regions or points of interest.
Recently, a few enhanced GNN architectures have been developed to tackle heterophily graphs where connected nodes are dissimilar.
However, urban graphs usually can be observed to possess a unique spatial heterophily property; that is, the dissimilarity of neighbors at different spatial distances can exhibit great diversity.
We propose a metric, named Spatial Diversity Score, to quantitatively measure the spatial heterophily and show how it can influence the performance of GNN
arXiv Detail & Related papers (2023-06-21T09:35:50Z) - GeoGLUE: A GeoGraphic Language Understanding Evaluation Benchmark [56.08664336835741]
We propose a GeoGraphic Language Understanding Evaluation benchmark, named GeoGLUE.
We collect data from open-released geographic resources and introduce six natural language understanding tasks.
We pro vide evaluation experiments and analysis of general baselines, indicating the effectiveness and significance of the GeoGLUE benchmark.
arXiv Detail & Related papers (2023-05-11T03:21:56Z) - GeoNet: Benchmarking Unsupervised Adaptation across Geographies [71.23141626803287]
We study the problem of geographic robustness and make three main contributions.
First, we introduce a large-scale dataset GeoNet for geographic adaptation.
Second, we hypothesize that the major source of domain shifts arise from significant variations in scene context.
Third, we conduct an extensive evaluation of several state-of-the-art unsupervised domain adaptation algorithms and architectures.
arXiv Detail & Related papers (2023-03-27T17:59:34Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z) - Urban Region Profiling via A Multi-Graph Representation Learning
Framework [0.0]
We propose a multi-graph representative learning framework, called Region2Vec, for urban region profiling.
Experiments on real-world datasets show that Region2Vec can be employed in three applications and outperforms all state-of-the-art baselines.
arXiv Detail & Related papers (2022-02-04T11:05:37Z) - Jalisco's multiclass land cover analysis and classification using a
novel lightweight convnet with real-world multispectral and relief data [51.715517570634994]
We present our novel lightweight (only 89k parameters) Convolution Neural Network (ConvNet) to make LC classification and analysis.
In this work, we combine three real-world open data sources to obtain 13 channels.
Our embedded analysis anticipates the limited performance in some classes and gives us the opportunity to group the most similar.
arXiv Detail & Related papers (2022-01-26T14:58:51Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - A Survey on Heterogeneous Graph Embedding: Methods, Techniques,
Applications and Sources [79.48829365560788]
Heterogeneous graphs (HGs) also known as heterogeneous information networks have become ubiquitous in real-world scenarios.
HG embedding aims to learn representations in a lower-dimension space while preserving the heterogeneous structures and semantics for downstream tasks.
arXiv Detail & Related papers (2020-11-30T15:03:47Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - Entropy as a measure of attractiveness and socioeconomic complexity in
Rio de Janeiro metropolitan area [52.77024349608834]
We use a mobile phone dataset and an entropy-based metric to measure the attractiveness of a location.
The results show that the attractiveness of a given location measured by entropy is an important descriptor of the socioeconomic status of the location.
arXiv Detail & Related papers (2020-03-23T15:58:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.