論文の概要: Diverse 3D Human Pose Generation in Scenes based on Decoupled Structure
- arxiv url: http://arxiv.org/abs/2406.05691v1
- Date: Sun, 9 Jun 2024 08:33:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 18:27:03.069176
- Title: Diverse 3D Human Pose Generation in Scenes based on Decoupled Structure
- Title(参考訳): 疎結合構造に基づくシーンにおける多次元ヒューマンポース生成
- Authors: Bowen Dang, Xi Zhao,
- Abstract要約: そこで本研究では,セマンティックコントロールによるシーン内の多様な3次元ポーズを生成する手法を提案する。
私たちのアプローチは、ポーズ生成、コンタクト生成、シーンに人間を配置する3つのステージで構成されています。
PROXデータセットを用いた実験結果から,より物理的に妥当な相互作用が得られた。
- 参考スコア(独自算出の注目度): 2.9895817635228017
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel method for generating diverse 3D human poses in scenes with semantic control. Existing methods heavily rely on the human-scene interaction dataset, resulting in a limited diversity of the generated human poses. To overcome this challenge, we propose to decouple the pose and interaction generation process. Our approach consists of three stages: pose generation, contact generation, and putting human into the scene. We train a pose generator on the human dataset to learn rich pose prior, and a contact generator on the human-scene interaction dataset to learn human-scene contact prior. Finally, the placing module puts the human body into the scene in a suitable and natural manner. The experimental results on the PROX dataset demonstrate that our method produces more physically plausible interactions and exhibits more diverse human poses. Furthermore, experiments on the MP3D-R dataset further validates the generalization ability of our method.
- Abstract(参考訳): 本稿では,セマンティックコントロールによるシーン内の多様な3次元ポーズを生成する新しい手法を提案する。
既存の手法は人間とシーンのインタラクションデータセットに大きく依存しており、それによって生成された人間のポーズの多様性が制限される。
この課題を克服するために、ポーズとインタラクションの生成プロセスを分離することを提案する。
私たちのアプローチは、ポーズ生成、コンタクト生成、シーンに人間を配置する3つのステージで構成されています。
我々は、人間のデータセットにポーズジェネレータをトレーニングし、よりリッチなポーズを学習し、人間とシーンのインタラクションデータセットにコンタクトジェネレータをトレーニングし、人間とシーンの接触を事前に学習する。
最後に、配置モジュールは人体を適切な自然の方法でシーンに配置する。
PROXデータセットを用いた実験結果から,本手法はより物理的に妥当な相互作用を生み出し,より多様な人間のポーズを示すことが示された。
さらに,MP3D-Rデータセットを用いた実験により,本手法の一般化能力をさらに検証した。
関連論文リスト
- Human-Aware 3D Scene Generation with Spatially-constrained Diffusion Models [16.259040755335885]
従来の自己回帰に基づく3Dシーン生成手法は、複数の物体と入力人間の関節分布を正確に捉えるのに苦労してきた。
本研究では,人間-物体衝突回避機構とオブジェクト-部屋境界制約という2つの空間衝突誘導機構を導入する。
我々のフレームワークは、人間とシーンのインタラクションを正確に行うことで、より自然でわかりやすい3Dシーンを生成することができる。
論文 参考訳(メタデータ) (2024-06-26T08:18:39Z) - MultiPly: Reconstruction of Multiple People from Monocular Video in the Wild [32.6521941706907]
モノクラーインザワイルドビデオから3Dで複数の人物を再構成する新しいフレームワークであるMultiPlyを提案する。
まず、シーン全体の階層化されたニューラル表現を定義し、個々の人間と背景モデルで合成する。
階層化可能なボリュームレンダリングを通じて,ビデオから階層化ニューラル表現を学習する。
論文 参考訳(メタデータ) (2024-06-03T17:59:57Z) - ContactGen: Contact-Guided Interactive 3D Human Generation for Partners [9.13466172688693]
物理的接触の観点から3次元ヒューマンジェネレーションの新たな課題を導入する。
与えられたパートナーヒトは、相互作用の種類に応じて多様なポーズと異なる接触領域を持つことができる。
そこで本研究では,対話型3次元人間を,ガイド付き拡散フレームワークに基づいて生成する手法を提案する。
論文 参考訳(メタデータ) (2024-01-30T17:57:46Z) - Contact-aware Human Motion Forecasting [87.04827994793823]
我々は,3Dシーンと過去の人間の動作を与えられた将来の人間のポーズを予測することで,シーン認識型3Dモーション予測の課題に取り組む。
提案手法は,現在最先端のヒトの動作予測と,合成データと実データの両方においてヒトの合成手法より優れる。
論文 参考訳(メタデータ) (2022-10-08T07:53:19Z) - Reconstructing Action-Conditioned Human-Object Interactions Using
Commonsense Knowledge Priors [42.17542596399014]
本稿では,画像から人-物間相互作用の多種多様な3次元モデルを推定する手法を提案する。
提案手法は,大規模言語モデルから高レベルのコモンセンス知識を抽出する。
本研究では,大規模な人-物間相互作用データセットを用いて,推定された3次元モデルを定量的に評価する。
論文 参考訳(メタデータ) (2022-09-06T13:32:55Z) - Neural Novel Actor: Learning a Generalized Animatable Neural
Representation for Human Actors [98.24047528960406]
本稿では,複数の人物の多視点画像のスパース集合から,汎用的アニマタブルなニューラル表現を学習するための新しい手法を提案する。
学習された表現は、カメラのスパースセットから任意の人の新しいビューイメージを合成し、さらにユーザのポーズ制御でアニメーション化することができる。
論文 参考訳(メタデータ) (2022-08-25T07:36:46Z) - Embodied Scene-aware Human Pose Estimation [25.094152307452]
シーン認識型人間のポーズ推定手法を提案する。
本手法は, シミュレーション環境下でのグローバルな3次元人間のポーズを再現し, 因果関係の1段階である。
論文 参考訳(メタデータ) (2022-06-18T03:50:19Z) - BEHAVE: Dataset and Method for Tracking Human Object Interactions [105.77368488612704]
マルチビューのRGBDフレームとそれに対応する3D SMPLとオブジェクトをアノテートしたアノテートコンタクトに適合させる。
このデータを用いて、自然環境における人間と物体を、容易に使用可能なマルチカメラで共同で追跡できるモデルを学ぶ。
論文 参考訳(メタデータ) (2022-04-14T13:21:19Z) - Hallucinating Pose-Compatible Scenes [55.064949607528405]
ポーズ条件付きシーン生成のための大規模生成対向ネットワークを提案する。
毎日の環境に1900万フレーム以上の人間がいる巨大なメタデータをキュレートします。
我々は、ポーズ互換シーンを人間の有無に関わらず幻覚化し、不整合シーンやポーズを可視化し、1つの生成された画像から別のシーンに人物を配置し、ポーズをアニメーションする様々な用途に、トレーニングされたモデルを活用する。
論文 参考訳(メタデータ) (2021-12-13T18:59:26Z) - Unsupervised 3D Human Pose Representation with Viewpoint and Pose
Disentanglement [63.853412753242615]
優れた3次元ポーズ表現を学習することは、人間のポーズ関連タスクにとって重要である。
本稿では,3次元ポーズ表現を学習するために,新しいシームズ・デノナイズドオートエンコーダを提案する。
提案手法は,2つの本質的に異なるタスクに対して,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-07-14T14:25:22Z) - Long-term Human Motion Prediction with Scene Context [60.096118270451974]
人間の動きを予測するための新しい3段階フレームワークを提案する。
提案手法はまず,まず複数の人間の動作目標を抽出し,各目標に向けて3次元人間の動作経路を計画し,最後に各経路に続く3次元人間のポーズシーケンスを予測する。
論文 参考訳(メタデータ) (2020-07-07T17:59:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。