TR2MTL: LLM based framework for Metric Temporal Logic Formalization of Traffic Rules
- URL: http://arxiv.org/abs/2406.05709v1
- Date: Sun, 9 Jun 2024 09:55:04 GMT
- Title: TR2MTL: LLM based framework for Metric Temporal Logic Formalization of Traffic Rules
- Authors: Kumar Manas, Stefan Zwicklbauer, Adrian Paschke,
- Abstract summary: TR2MTL is a framework that employs large language models (LLMs) to automatically translate traffic rules into metric temporal logic (MTL)
It is envisioned as a human-in-loop system for AV rule formalization.
It can be extended to various forms of temporal logic and rules.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic rules formalization is crucial for verifying the compliance and safety of autonomous vehicles (AVs). However, manual translation of natural language traffic rules as formal specification requires domain knowledge and logic expertise, which limits its adaptation. This paper introduces TR2MTL, a framework that employs large language models (LLMs) to automatically translate traffic rules (TR) into metric temporal logic (MTL). It is envisioned as a human-in-loop system for AV rule formalization. It utilizes a chain-of-thought in-context learning approach to guide the LLM in step-by-step translation and generating valid and grammatically correct MTL formulas. It can be extended to various forms of temporal logic and rules. We evaluated the framework on a challenging dataset of traffic rules we created from various sources and compared it against LLMs using different in-context learning methods. Results show that TR2MTL is domain-agnostic, achieving high accuracy and generalization capability even with a small dataset. Moreover, the method effectively predicts formulas with varying degrees of logical and semantic structure in unstructured traffic rules.
Related papers
- RuAG: Learned-rule-augmented Generation for Large Language Models [62.64389390179651]
We propose a novel framework, RuAG, to automatically distill large volumes of offline data into interpretable first-order logic rules.
We evaluate our framework on public and private industrial tasks, including natural language processing, time-series, decision-making, and industrial tasks.
arXiv Detail & Related papers (2024-11-04T00:01:34Z) - Driving with Regulation: Interpretable Decision-Making for Autonomous Vehicles with Retrieval-Augmented Reasoning via LLM [11.725133614445093]
This work presents an interpretable decision-making framework for autonomous vehicles.
We develop a Traffic Regulation Retrieval (TRR) Agent based on Retrieval-Augmented Generation (RAG)
Given the semantic complexity of the retrieved rules, we also design a reasoning module powered by a Large Language Model (LLM)
arXiv Detail & Related papers (2024-10-07T05:27:22Z) - Think Twice Before Recognizing: Large Multimodal Models for General Fine-grained Traffic Sign Recognition [49.20086587208214]
We propose a new strategy called think twice before recognizing to improve fine-grained traffic sign recognition (TSR)
Our strategy achieves effective fine-grained TSR by stimulating the multiple-thinking capability of large multimodal models (LMM)
arXiv Detail & Related papers (2024-09-03T02:08:47Z) - Inductive Learning of Logical Theories with LLMs: A Complexity-graded Analysis [9.865771016218549]
This work presents a novel systematic methodology to analyse the capabilities and limitations of Large Language Models (LLMs)
The analysis is complexity-graded w.r.t. rule dependency structure, allowing quantification of specific inference challenges on LLM performance.
arXiv Detail & Related papers (2024-08-15T16:41:00Z) - Cross-domain Few-shot In-context Learning for Enhancing Traffic Sign Recognition [49.20086587208214]
We propose a cross-domain few-shot in-context learning method based on the MLLM for enhancing traffic sign recognition.
By using description texts, our method reduces the cross-domain differences between template and real traffic signs.
Our approach requires only simple and uniform textual indications, without the need for large-scale traffic sign images and labels.
arXiv Detail & Related papers (2024-07-08T10:51:03Z) - Verbalized Machine Learning: Revisiting Machine Learning with Language Models [63.10391314749408]
We introduce the framework of verbalized machine learning (VML)
VML constrains the parameter space to be human-interpretable natural language.
We empirically verify the effectiveness of VML, and hope that VML can serve as a stepping stone to stronger interpretability.
arXiv Detail & Related papers (2024-06-06T17:59:56Z) - Towards Explainable Traffic Flow Prediction with Large Language Models [36.86937188565623]
We propose a Traffic flow Prediction model based on Large Language Models (LLMs) to generate explainable traffic predictions.
By transferring multi-modal traffic data into natural language descriptions, xTP-LLM captures complex time-series patterns and external factors from comprehensive traffic data.
Empirically, xTP-LLM shows competitive accuracy compared with deep learning baselines, while providing an intuitive and reliable explanation for predictions.
arXiv Detail & Related papers (2024-04-03T07:14:15Z) - AutoGuide: Automated Generation and Selection of State-Aware Guidelines for Large Language Model Agents [74.17623527375241]
AutoGuide bridges the knowledge gap in pre-trained LLMs by leveraging implicit knowledge in offline experiences.
We show that our approach outperforms competitive LLM-based baselines by a large margin in sequential decision-making benchmarks.
arXiv Detail & Related papers (2024-03-13T22:06:03Z) - LLMLight: Large Language Models as Traffic Signal Control Agents [27.29109883009176]
Traffic Signal Control (TSC) is a crucial component in urban traffic management, aiming to optimize road network efficiency and reduce congestion.
This paper presents LLMLight, a novel framework employing Large Language Models (LLMs) as decision-making agents for TSC.
arXiv Detail & Related papers (2023-12-26T13:17:06Z) - Guided Conditional Diffusion for Controllable Traffic Simulation [42.198185904248994]
Controllable and realistic traffic simulation is critical for developing and verifying autonomous vehicles.
Data-driven approaches generate realistic and human-like behaviors, improving transfer from simulated to real-world traffic.
We develop a conditional diffusion model for controllable traffic generation (CTG) that allows users to control desired properties of trajectories at test time.
arXiv Detail & Related papers (2022-10-31T14:44:59Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
We propose a model-free RL algorithm that enables the use of Linear Temporal Logic (LTL) to formulate a goal for unknown continuous-state/action Markov Decision Processes (MDPs)
The algorithm is guaranteed to synthesise a control policy whose traces satisfy the specification with maximal probability.
arXiv Detail & Related papers (2019-02-02T20:09:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.