Digital Business Model Analysis Using a Large Language Model
- URL: http://arxiv.org/abs/2406.05741v1
- Date: Sun, 9 Jun 2024 11:16:11 GMT
- Title: Digital Business Model Analysis Using a Large Language Model
- Authors: Masahiro Watanabe, Naoshi Uchihira,
- Abstract summary: This study proposes an LLM-based method for comparing and analyzing similar companies from different business do-mains.
This method can support idea generation in digital business model design.
- Score: 1.5500145658862499
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Digital transformation (DX) has recently become a pressing issue for many companies as the latest digital technologies, such as artificial intelligence and the Internet of Things, can be easily utilized. However, devising new business models is not easy for compa-nies, though they can improve their operations through digital technologies. Thus, business model design support methods are needed by people who lack digital tech-nology expertise. In contrast, large language models (LLMs) represented by ChatGPT and natural language processing utilizing LLMs have been developed revolutionarily. A business model design support system that utilizes these technologies has great potential. However, research on this area is scant. Accordingly, this study proposes an LLM-based method for comparing and analyzing similar companies from different business do-mains as a first step toward business model design support utilizing LLMs. This method can support idea generation in digital business model design.
Related papers
- Fine-Tuning and Deploying Large Language Models Over Edges: Issues and Approaches [64.42735183056062]
Large language models (LLMs) have transitioned from specialized models to versatile foundation models.
LLMs exhibit impressive zero-shot ability, however, require fine-tuning on local datasets and significant resources for deployment.
arXiv Detail & Related papers (2024-08-20T09:42:17Z) - Reusable MLOps: Reusable Deployment, Reusable Infrastructure and
Hot-Swappable Machine Learning models and services [0.0]
We introduce a new sustainable concept in the field of AI/ML operations - called Reusable MLOps.
We reuse the existing deployment and infrastructure to serve new models by hot-swapping them without tearing down the infrastructure or the microservice.
arXiv Detail & Related papers (2024-02-19T23:40:46Z) - Towards Automatic Support of Software Model Evolution with Large
Language~Models [6.872484164111954]
We propose an approach that utilizes large language models for model completion and discovering editing patterns in model histories of software systems.
We have found that large language models are indeed a promising technology for supporting software model evolution.
arXiv Detail & Related papers (2023-12-19T18:38:01Z) - Large Language Models for Mathematicians [53.27302720305432]
Large language models (LLMs) have received immense interest for their general-purpose language understanding and, in particular, their ability to generate high-quality text or computer code.
In this note, we discuss to what extent they can aid professional mathematicians.
arXiv Detail & Related papers (2023-12-07T18:59:29Z) - Adapting Large Language Models for Content Moderation: Pitfalls in Data
Engineering and Supervised Fine-tuning [79.53130089003986]
Large Language Models (LLMs) have become a feasible solution for handling tasks in various domains.
In this paper, we introduce how to fine-tune a LLM model that can be privately deployed for content moderation.
arXiv Detail & Related papers (2023-10-05T09:09:44Z) - Generative AI for Business Strategy: Using Foundation Models to Create
Business Strategy Tools [0.7784248206747153]
We propose the use of foundation models for business decision making.
We derive IT artifacts in the form of asequence of signed business networks.
Such artifacts can inform business stakeholders about the state of the market and their own positioning.
arXiv Detail & Related papers (2023-08-27T19:03:12Z) - Large Language Models Humanize Technology [6.127963013089406]
Large Language Models (LLMs) have made rapid progress in recent months and weeks.
This has sparked concerns about aligning these models with human values, their impact on labor markets, and the potential need for regulation.
We argue that LLMs exhibit emergent abilities to humanize technology more effectively than previous technologies.
arXiv Detail & Related papers (2023-05-09T16:05:36Z) - A Survey of Large Language Models [81.06947636926638]
Language modeling has been widely studied for language understanding and generation in the past two decades.
Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora.
To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size.
arXiv Detail & Related papers (2023-03-31T17:28:46Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - Foundation models in brief: A historical, socio-technical focus [2.5991265608180396]
Foundation models can be disruptive for future AI development by scaling up deep learning.
Models achieve state-of-the-art performance on a variety of tasks in domains such as natural language processing and computer vision.
arXiv Detail & Related papers (2022-12-17T22:11:33Z) - What Language Model to Train if You Have One Million GPU Hours? [54.32062236748831]
We study the impact of different modeling practices and their impact on zero-shot generalization.
We also study the performance of a multilingual model and how it compares to the English-only one.
All our models and code are open-sourced at https://huggingface.co/bigscience.
arXiv Detail & Related papers (2022-10-27T13:43:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.