Leveraging Large Language Models for Enhanced Digital Twin Modeling: Trends, Methods, and Challenges
- URL: http://arxiv.org/abs/2503.02167v1
- Date: Tue, 04 Mar 2025 01:13:31 GMT
- Title: Leveraging Large Language Models for Enhanced Digital Twin Modeling: Trends, Methods, and Challenges
- Authors: Linyao Yang, Shi Luo, Xi Cheng, Lei Yu,
- Abstract summary: Digital twins enable continuous monitoring, simulation, prediction, and optimization.<n>Recent advancements in communication, computing, and control technologies have accelerated the development and adoption of digital twins.<n>The rise of large language models (LLMs) offers new avenues to address these challenges.
- Score: 8.209646682836054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Digital twin technology is a transformative innovation driving the digital transformation and intelligent optimization of manufacturing systems. By integrating real-time data with computational models, digital twins enable continuous monitoring, simulation, prediction, and optimization, effectively bridging the gap between the physical and digital worlds. Recent advancements in communication, computing, and control technologies have accelerated the development and adoption of digital twins across various industries. However, significant challenges remain, including limited data for accurate system modeling, inefficiencies in system analysis, and a lack of explainability in the interactions between physical and digital systems. The rise of large language models (LLMs) offers new avenues to address these challenges. LLMs have shown exceptional capabilities across diverse domains, exhibiting strong generalization and emergent abilities that hold great potential for enhancing digital twins. This paper provides a comprehensive review of recent developments in LLMs and their applications to digital twin modeling. We propose a unified description-prediction-prescription framework to integrate digital twin modeling technologies and introduce a structured taxonomy to categorize LLM functionalities in these contexts. For each stage of application, we summarize the methodologies, identify key challenges, and explore potential future directions. To demonstrate the effectiveness of LLM-enhanced digital twins, we present an LLM-enhanced enterprise digital twin system, which enables automatic modeling and optimization of an enterprise. Finally, we discuss future opportunities and challenges in advancing LLM-enhanced digital twins, offering valuable insights for researchers and practitioners in related fields.
Related papers
- A Survey on Mechanistic Interpretability for Multi-Modal Foundation Models [74.48084001058672]
The rise of foundation models has transformed machine learning research.<n> multimodal foundation models (MMFMs) pose unique interpretability challenges beyond unimodal frameworks.<n>This survey explores two key aspects: (1) the adaptation of LLM interpretability methods to multimodal models and (2) understanding the mechanistic differences between unimodal language models and crossmodal systems.
arXiv Detail & Related papers (2025-02-22T20:55:26Z) - Automatically Learning Hybrid Digital Twins of Dynamical Systems [56.69628749813084]
Digital Twins (DTs) simulate the states and temporal dynamics of real-world systems.
DTs often struggle to generalize to unseen conditions in data-scarce settings.
In this paper, we propose an evolutionary algorithm ($textbfHDTwinGen$) to autonomously propose, evaluate, and optimize HDTwins.
arXiv Detail & Related papers (2024-10-31T07:28:22Z) - Empowering Cognitive Digital Twins with Generative Foundation Models: Developing a Low-Carbon Integrated Freight Transportation System [6.87702244676681]
We develop digital twins for real-time awareness, predictive analytics, and urban logistics optimization.
Recent advancements in generative AI offer new opportunities to streamline digital twins.
We propose a conceptual framework employing transformer-based language models to enhance an urban digital twin.
arXiv Detail & Related papers (2024-10-08T05:53:20Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - From Digital Twins to Digital Twin Prototypes: Concepts, Formalization,
and Applications [55.57032418885258]
There is no consensual definition of what a digital twin is.
Our digital twin prototype (DTP) approach supports engineers during the development and automated testing of embedded software systems.
arXiv Detail & Related papers (2024-01-15T22:13:48Z) - Digital Twin Framework for Optimal and Autonomous Decision-Making in
Cyber-Physical Systems: Enhancing Reliability and Adaptability in the Oil and
Gas Industry [0.0]
This work proposes a digital twin framework for optimal and autonomous decision-making applied to a gas-lift process in the oil and gas industry.
The framework combines Bayesian inference, Monte Carlo simulations, transfer learning, online learning, and novel strategies to confer cognition to the DT.
arXiv Detail & Related papers (2023-11-21T18:02:52Z) - Redefining Digital Health Interfaces with Large Language Models [69.02059202720073]
Large Language Models (LLMs) have emerged as general-purpose models with the ability to process complex information.
We show how LLMs can provide a novel interface between clinicians and digital technologies.
We develop a new prognostic tool using automated machine learning.
arXiv Detail & Related papers (2023-10-05T14:18:40Z) - Enhanced multi-fidelity modelling for digital twin and uncertainty
quantification [0.0]
Data-driven models play a crucial role in digital twins, enabling real-time updates and predictions.
The fidelity of available data and the scarcity of accurate sensor data often hinder the efficient learning of surrogate models.
We propose a novel framework that begins by developing a robust multi-fidelity surrogate model.
arXiv Detail & Related papers (2023-06-26T05:58:17Z) - A Comprehensive Review of Digital Twin -- Part 2: Roles of Uncertainty
Quantification and Optimization, a Battery Digital Twin, and Perspectives [11.241244950889886]
Second paper presents a literature review of key enabling technologies of digital twins.
Third paper presents a case study where a battery digital twin is constructed and tested to illustrate some of the modeling and twinning methods reviewed.
arXiv Detail & Related papers (2022-08-27T01:36:15Z) - A Comprehensive Review of Digital Twin -- Part 1: Modeling and Twinning
Enabling Technologies [11.241244950889886]
Digital twin is an emerging technology in the era of Industry 4.0.
Digital twins can model the physical world as a group of interconnected digital models.
In part two of this review, the role of uncertainty quantification and optimization are discussed.
arXiv Detail & Related papers (2022-08-26T15:01:26Z) - Digital Twins: State of the Art Theory and Practice, Challenges, and
Open Research Questions [62.67593386796497]
This work explores the various DT features and current approaches, the shortcomings and reasons behind the delay in the implementation and adoption of digital twin.
The major reasons for this delay are the lack of a universal reference framework, domain dependence, security concerns of shared data, reliance of digital twin on other technologies, and lack of quantitative metrics.
arXiv Detail & Related papers (2020-11-02T19:08:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.