VCR-GauS: View Consistent Depth-Normal Regularizer for Gaussian Surface Reconstruction
- URL: http://arxiv.org/abs/2406.05774v2
- Date: Wed, 30 Oct 2024 09:40:39 GMT
- Title: VCR-GauS: View Consistent Depth-Normal Regularizer for Gaussian Surface Reconstruction
- Authors: Hanlin Chen, Fangyin Wei, Chen Li, Tianxin Huang, Yunsong Wang, Gim Hee Lee,
- Abstract summary: We propose a Depth-Normal regularizer that directly couples normal with other geometric parameters, leading to full updates of the geometric parameters from normal regularization.
We also introduce a densification and splitting strategy to regularize the size and distribution of 3D Gaussians for more accurate surface modeling.
- Score: 47.603017811399624
- License:
- Abstract: Although 3D Gaussian Splatting has been widely studied because of its realistic and efficient novel-view synthesis, it is still challenging to extract a high-quality surface from the point-based representation. Previous works improve the surface by incorporating geometric priors from the off-the-shelf normal estimator. However, there are two main limitations: 1) Supervising normals rendered from 3D Gaussians effectively updates the rotation parameter but is less effective for other geometric parameters; 2) The inconsistency of predicted normal maps across multiple views may lead to severe reconstruction artifacts. In this paper, we propose a Depth-Normal regularizer that directly couples normal with other geometric parameters, leading to full updates of the geometric parameters from normal regularization. We further propose a confidence term to mitigate inconsistencies of normal predictions across multiple views. Moreover, we also introduce a densification and splitting strategy to regularize the size and distribution of 3D Gaussians for more accurate surface modeling. Compared with Gaussian-based baselines, experiments show that our approach obtains better reconstruction quality and maintains competitive appearance quality at faster training speed and 100+ FPS rendering.
Related papers
- Quadratic Gaussian Splatting for Efficient and Detailed Surface Reconstruction [7.500927135156425]
Quadratic Gaussian Splatting (QGS) is a novel method that replaces disks with quadric surfaces.
QGS renders spatial curvature to guide the normal consistency term, to effectively reduce over-smoothing.
Our code willbe released as open source.
arXiv Detail & Related papers (2024-11-25T13:55:00Z) - GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
We propose a generalizable Gaussian Splatting approach for high-resolution image rendering under a sparse-view camera setting.
We train our Gaussian parameter regression module on human-only data or human-scene data, jointly with a depth estimation module to lift 2D parameter maps to 3D space.
Experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
arXiv Detail & Related papers (2024-11-18T08:18:44Z) - CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2 is a novel approach for large-scale scene reconstruction.
We implement a decomposed-gradient-based densification and depth regression technique to eliminate blurry artifacts and accelerate convergence.
Our method strikes a promising balance between visual quality, geometric accuracy, as well as storage and training costs.
arXiv Detail & Related papers (2024-11-01T17:59:31Z) - Normal-GS: 3D Gaussian Splatting with Normal-Involved Rendering [42.84481755313498]
Normal-GS is a novel approach that integrates normal vectors into the 3DGS rendering pipeline.
We show that Normal-GS achieves near state-of-the-art visual quality while obtaining accurate surface normals.
arXiv Detail & Related papers (2024-10-27T20:58:50Z) - ND-SDF: Learning Normal Deflection Fields for High-Fidelity Indoor Reconstruction [50.07671826433922]
It is non-trivial to simultaneously recover meticulous geometry and preserve smoothness across regions with differing characteristics.
We propose ND-SDF, which learns a Normal Deflection field to represent the angular deviation between the scene normal and the prior normal.
Our method not only obtains smooth weakly textured regions such as walls and floors but also preserves the geometric details of complex structures.
arXiv Detail & Related papers (2024-08-22T17:59:01Z) - Effective Rank Analysis and Regularization for Enhanced 3D Gaussian Splatting [33.01987451251659]
3D Gaussian Splatting (3DGS) has emerged as a promising technique capable of real-time rendering with high-quality 3D reconstruction.
Despite its potential, 3DGS encounters challenges, including needle-like artifacts, suboptimal geometries, and inaccurate normals.
We introduce effective rank as a regularization, which constrains the structure of the Gaussians.
arXiv Detail & Related papers (2024-06-17T15:51:59Z) - PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction [37.14913599050765]
We propose a fast planar-based Gaussian splatting reconstruction representation (PGSR) to achieve high-fidelity surface reconstruction.
We then introduce single-view geometric, multi-view photometric, and geometric regularization to preserve global geometric accuracy.
Our method achieves fast training and rendering while maintaining high-fidelity rendering and geometric reconstruction, outperforming 3DGS-based and NeRF-based methods.
arXiv Detail & Related papers (2024-06-10T17:59:01Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF) is a novel approach for efficient, high-quality, and adaptive surface reconstruction in scenes.
GOF is derived from ray-tracing-based volume rendering of 3D Gaussians.
GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-04-16T17:57:19Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS) has recently revolutionized radiance field reconstruction, achieving high quality novel view synthesis and fast rendering speed without baking.
We present 2D Gaussian Splatting (2DGS), a novel approach to model and reconstruct geometrically accurate radiance fields from multi-view images.
We demonstrate that our differentiable terms allows for noise-free and detailed geometry reconstruction while maintaining competitive appearance quality, fast training speed, and real-time rendering.
arXiv Detail & Related papers (2024-03-26T17:21:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.