Async Learned User Embeddings for Ads Delivery Optimization
- URL: http://arxiv.org/abs/2406.05898v2
- Date: Sun, 23 Jun 2024 05:43:41 GMT
- Title: Async Learned User Embeddings for Ads Delivery Optimization
- Authors: Mingwei Tang, Meng Liu, Hong Li, Junjie Yang, Chenglin Wei, Boyang Li, Dai Li, Rengan Xu, Yifan Xu, Zehua Zhang, Xiangyu Wang, Linfeng Liu, Yuelei Xie, Chengye Liu, Labib Fawaz, Li Li, Hongnan Wang, Bill Zhu, Sri Reddy,
- Abstract summary: In recommendation systems, high-quality user embeddings can capture subtle preferences, enable precise similarity calculations, and adapt to changing preferences over time to maintain relevance.
We propose to asynchronously learn high fidelity user embeddings for billions of users each day from sequence based multimodal user activities through a Transformer-like large scale feature learning module.
- Score: 24.104745716074262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recommendation systems, high-quality user embeddings can capture subtle preferences, enable precise similarity calculations, and adapt to changing preferences over time to maintain relevance. The effectiveness of recommendation systems depends on the quality of user embedding. We propose to asynchronously learn high fidelity user embeddings for billions of users each day from sequence based multimodal user activities through a Transformer-like large scale feature learning module. The async learned user representations embeddings (ALURE) are further converted to user similarity graphs through graph learning and then combined with user realtime activities to retrieval highly related ads candidates for the ads delivery system. Our method shows significant gains in both offline and online experiments.
Related papers
- Multi-agents based User Values Mining for Recommendation [52.26100802380767]
We propose a zero-shot multi-LLM collaborative framework for effective and accurate user value extraction.<n>We apply text summarization techniques to condense item content while preserving essential meaning.<n>To mitigate hallucinations, we introduce two specialized agent roles: evaluators and supervisors.
arXiv Detail & Related papers (2025-05-02T04:01:31Z) - Search-Based Interaction For Conversation Recommendation via Generative Reward Model Based Simulated User [117.82681846559909]
Conversational recommendation systems (CRSs) use multi-turn interaction to capture user preferences and provide personalized recommendations.
We propose a generative reward model based simulated user, named GRSU, for automatic interaction with CRSs.
arXiv Detail & Related papers (2025-04-29T06:37:30Z) - AdaptRec: A Self-Adaptive Framework for Sequential Recommendations with Large Language Models [10.52052172996229]
AdaptRec is a self-adaptive fram-ework that leverages Large Language Models for sequential recommendations by incorporating explicit collaborative signals.
We develop a User-Contextualized Recommendation Prompt that translates their behavior sequences into natural language, explicitly integrating this information into the recommendation process.
Experiments demonstrate AdaptRec's superior performance, with significant improvements in HitRatio@1 scores of 7.13%, 18.16%, and 10.41% across real-world datasets.
arXiv Detail & Related papers (2025-04-06T00:30:50Z) - Interactive Visualization Recommendation with Hier-SUCB [52.11209329270573]
We propose an interactive personalized visualization recommendation (PVisRec) system that learns on user feedback from previous interactions.
For more interactive and accurate recommendations, we propose Hier-SUCB, a contextual semi-bandit in the PVisRec setting.
arXiv Detail & Related papers (2025-02-05T17:14:45Z) - Retrieval Augmentation via User Interest Clustering [57.63883506013693]
Industrial recommender systems are sensitive to the patterns of user-item engagement.
We propose a novel approach that efficiently constructs user interest and facilitates low computational cost inference.
Our approach has been deployed in multiple products at Meta, facilitating short-form video related recommendation.
arXiv Detail & Related papers (2024-08-07T16:35:10Z) - Neural Graph Collaborative Filtering Using Variational Inference [19.80976833118502]
We introduce variational embedding collaborative filtering (GVECF) as a novel framework to incorporate representations learned through a variational graph auto-encoder.
Our proposed method achieves up to 13.78% improvement in the recall over the test data.
arXiv Detail & Related papers (2023-11-20T15:01:33Z) - TransAct: Transformer-based Realtime User Action Model for
Recommendation at Pinterest [17.247452803197362]
This paper presents Pinterest's ranking architecture for Homefeed.
We propose TransAct, a sequential model that extracts users' short-term preferences from their realtime activities.
We describe the results of ablation studies, the challenges we faced during productionization, and the outcome of an online A/B experiment.
arXiv Detail & Related papers (2023-05-31T23:45:29Z) - Personalized Reward Learning with Interaction-Grounded Learning (IGL) [7.898208662809734]
Modern recommender systems typically optimize for the same fixed combination of implicit feedback signals across all users.
We propose applying the recent Interaction Grounded Learning paradigm to address the challenge of learning representations of diverse user communication modalities.
arXiv Detail & Related papers (2022-11-28T23:18:10Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
Sequential recommender models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform.
Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online.
Intent modeling is thus critical for understanding users and optimizing long-term user experience.
arXiv Detail & Related papers (2022-11-17T19:00:24Z) - Intent-aware Multi-source Contrastive Alignment for Tag-enhanced
Recommendation [46.04494053005958]
We seek an alternative framework that is light and effective through self-supervised learning across different sources of information.
We use a self-supervision signal to pair users with the auxiliary information associated with the items they have interacted with before.
We show that our method can achieve better performance while requiring less training time.
arXiv Detail & Related papers (2022-11-11T17:43:19Z) - Everyone's Preference Changes Differently: Weighted Multi-Interest
Retrieval Model [18.109035867113217]
Multi-Interest Preference (MIP) model is an approach that produces multi-interest for users by using the user's sequential engagement more effectively.
Extensive experiments have been done on various industrial-scale datasets to demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2022-07-14T04:29:54Z) - Modeling Dynamic User Preference via Dictionary Learning for Sequential
Recommendation [133.8758914874593]
Capturing the dynamics in user preference is crucial to better predict user future behaviors because user preferences often drift over time.
Many existing recommendation algorithms -- including both shallow and deep ones -- often model such dynamics independently.
This paper considers the problem of embedding a user's sequential behavior into the latent space of user preferences.
arXiv Detail & Related papers (2022-04-02T03:23:46Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
This work proposes a Knowledge-Enhanced Hierarchical Graph Transformer Network (KHGT) to investigate multi-typed interactive patterns between users and items in recommender systems.
KHGT is built upon a graph-structured neural architecture to capture type-specific behavior characteristics.
We show that KHGT consistently outperforms many state-of-the-art recommendation methods across various evaluation settings.
arXiv Detail & Related papers (2021-10-08T09:44:00Z) - Learning Transferrable Parameters for Long-tailed Sequential User
Behavior Modeling [70.64257515361972]
We argue that focusing on tail users could bring more benefits and address the long tails issue.
Specifically, we propose a gradient alignment and adopt an adversarial training scheme to facilitate knowledge transfer from the head to the tail.
arXiv Detail & Related papers (2020-10-22T03:12:02Z) - Empowering Active Learning to Jointly Optimize System and User Demands [70.66168547821019]
We propose a new active learning approach that jointly optimize the active learning system (training efficiently) and the user (receiving useful instances)
We study our approach in an educational application, which particularly benefits from this technique as the system needs to rapidly learn to predict the appropriateness of an exercise to a particular user.
We evaluate multiple learning strategies and user types with data from real users and find that our joint approach better satisfies both objectives when alternative methods lead to many unsuitable exercises for end users.
arXiv Detail & Related papers (2020-05-09T16:02:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.