論文の概要: Distributionally Robust Safe Sample Screening
- arxiv url: http://arxiv.org/abs/2406.05964v1
- Date: Mon, 10 Jun 2024 01:46:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 15:16:08.447479
- Title: Distributionally Robust Safe Sample Screening
- Title(参考訳): 分散ロバスト安全なサンプルスクリーニング
- Authors: Hiroyuki Hanada, Aoyama Tatsuya, Akahane Satoshi, Tomonari Tanaka, Yoshito Okura, Yu Inatsu, Noriaki Hashimoto, Shion Takeno, Taro Murayama, Hanju Lee, Shinya Kojima, Ichiro Takeuchi,
- Abstract要約: 分散ロバストセーフサンプルスクリーニング(DRSSS)と呼ばれる機械学習手法を提案する。
DRSSSは、将来トレーニングサンプルの分布が変化しても、不要なトレーニングサンプルを特定することを目的としている。
我々は、DRSSS法の理論的保証と、合成データセットと実世界のデータセットの数値実験による性能評価を行う。
- 参考スコア(独自算出の注目度): 15.791952053731448
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we propose a machine learning method called Distributionally Robust Safe Sample Screening (DRSSS). DRSSS aims to identify unnecessary training samples, even when the distribution of the training samples changes in the future. To achieve this, we effectively combine the distributionally robust (DR) paradigm, which aims to enhance model robustness against variations in data distribution, with the safe sample screening (SSS), which identifies unnecessary training samples prior to model training. Since we need to consider an infinite number of scenarios regarding changes in the distribution, we applied SSS because it does not require model training after the change of the distribution. In this paper, we employed the covariate shift framework to represent the distribution of training samples and reformulated the DR covariate-shift problem as a weighted empirical risk minimization problem, where the weights are subject to uncertainty within a predetermined range. By extending the existing SSS technique to accommodate this weight uncertainty, the DRSSS method is capable of reliably identifying unnecessary samples under any future distribution within a specified range. We provide a theoretical guarantee for the DRSSS method and validate its performance through numerical experiments on both synthetic and real-world datasets.
- Abstract(参考訳): 本研究では,DRSSS(Dis Distributionally Robust Safe Sample Screening)と呼ばれる機械学習手法を提案する。
DRSSSは、将来トレーニングサンプルの分布が変化しても、不要なトレーニングサンプルを特定することを目的としている。
そこで本研究では,データ分散の変動に対するモデルロバスト性向上を目的とした分散ロバスト(DR)パラダイムと,モデルトレーニングに先立って不要なトレーニングサンプルを識別する安全なサンプルスクリーニング(SSS)を効果的に組み合わせた。
分散の変化に関して無限のシナリオを考える必要があるため、分散の変化後にモデルトレーニングを必要としないため、SSSを適用した。
本稿では,トレーニングサンプルの分布を表すために共変量シフトフレームワークを用い,DR共変量シフト問題を,所定の範囲内で重みが不確実な重み付き経験的リスク最小化問題として再検討した。
この重みの不確実性に対応するために既存のSSS技術を拡張することで、DRSSS法は、特定範囲内の将来の分布下で不必要なサンプルを確実に識別することができる。
我々は、DRSSS法の理論的保証と、合成データセットと実世界のデータセットの数値実験による性能評価を行う。
関連論文リスト
- Dataset Quantization with Active Learning based Adaptive Sampling [11.157462442942775]
また, 不均一なサンプル分布であっても, 性能維持が可能であることを示す。
サンプル選択を最適化するために,新しい能動的学習に基づく適応型サンプリング手法を提案する。
提案手法は,最先端のデータセット圧縮手法よりも優れている。
論文 参考訳(メタデータ) (2024-07-09T23:09:18Z) - Training Implicit Generative Models via an Invariant Statistical Loss [3.139474253994318]
暗黙的な生成モデルは任意の複雑なデータ分布を学習する能力を持つ。
マイナス面として、トレーニングでは、敵対的判別器を使用して人工的に生成されたデータと実際のデータを区別する必要がある。
本研究では,1次元(1次元)生成暗黙的モデルを学習するための判別器フリーな手法を開発した。
論文 参考訳(メタデータ) (2024-02-26T09:32:28Z) - Multiply Robust Estimation for Local Distribution Shifts with Multiple Domains [9.429772474335122]
我々は、全人口の複数のセグメントにまたがってデータ分布が変化するシナリオに焦点を当てる。
そこで本研究では,各セグメントのモデル性能を改善するために,二段階多重ロバスト推定法を提案する。
本手法は,市販の機械学習モデルを用いて実装されるように設計されている。
論文 参考訳(メタデータ) (2024-02-21T22:01:10Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Multi-Domain Joint Training for Person Re-Identification [51.73921349603597]
ReID(Deep Learning-based person Re-IDentification)は、優れたパフォーマンスを達成するために、大量のトレーニングデータを必要とすることが多い。
多様な環境からより多くのトレーニングデータを集めることで、ReIDのパフォーマンスが向上する傾向にある。
本稿では,パラメータを様々な要因に適応させることができる,Domain-Camera-Sample Dynamic Network (DCSD) というアプローチを提案する。
論文 参考訳(メタデータ) (2022-01-06T09:20:59Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
我々は、最小限の統計量という情報理論の概念を用いて、ロバストで刺激的な表現を定義し、分析する。
入力分布のバイアスしか持たない場合でも、モデルはトレーニングデータから急激な特徴を拾い上げることができることを証明しています。
分析から着想を得た結果,グループDROは,グループ同士の相関関係を直接考慮しない場合に失敗する可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-14T05:39:09Z) - WILDS: A Benchmark of in-the-Wild Distribution Shifts [157.53410583509924]
分散シフトは、ワイルドにデプロイされた機械学習システムの精度を実質的に低下させることができる。
分散シフトの多様な範囲を反映した8つのベンチマークデータセットのキュレーションコレクションであるWILDSを紹介します。
本研究は, 標準訓練の結果, 分布性能よりも, 分布域外性能が有意に低下することを示す。
論文 参考訳(メタデータ) (2020-12-14T11:14:56Z) - Attentional-Biased Stochastic Gradient Descent [74.49926199036481]
深層学習におけるデータ不均衡やラベルノイズ問題に対処するための証明可能な手法(ABSGD)を提案する。
本手法は運動量SGDの簡易な修正であり,各試料に個別の重み付けを行う。
ABSGDは追加コストなしで他の堅牢な損失と組み合わせられるほど柔軟である。
論文 参考訳(メタデータ) (2020-12-13T03:41:52Z) - Robust Federated Learning: The Case of Affine Distribution Shifts [41.27887358989414]
我々は,ユーザのサンプルの分布変化に対して良好な性能を実現するための,堅牢なフェデレーション学習アルゴリズムを開発した。
新しいテストユーザにおいて,アフィン分布シフトは学習者分類器の性能を著しく低下させるのに十分であることを示す。
論文 参考訳(メタデータ) (2020-06-16T03:43:59Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z) - Reinforced Data Sampling for Model Diversification [15.547681142342846]
本稿では,データを適切にサンプリングする方法を学ぶための新しいReinforced Data Smpling (RDS)法を提案する。
モデルダイバーシフィケーションの最適化問題である$delta-div$をデータサンプリングで定式化し,モデルダイバーシフィケーションを注入することで学習ポテンシャルと最適アロケーションを最大化する。
モデル多様化のためのトレーニング可能なサンプリングは,各種機械学習タスクの潜在能力を追求する競技組織,研究者,さらには開始者にとって有用であることが示唆された。
論文 参考訳(メタデータ) (2020-06-12T11:46:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。