論文の概要: Distributionally Robust Safe Sample Elimination under Covariate Shift
- arxiv url: http://arxiv.org/abs/2406.05964v2
- Date: Thu, 14 Nov 2024 05:00:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:22:59.829023
- Title: Distributionally Robust Safe Sample Elimination under Covariate Shift
- Title(参考訳): 共変量シフト下におけるロバストな安全なサンプル除去
- Authors: Hiroyuki Hanada, Tatsuya Aoyama, Satoshi Akahane, Tomonari Tanaka, Yoshito Okura, Yu Inatsu, Noriaki Hashimoto, Shion Takeno, Taro Murayama, Hanju Lee, Shinya Kojima, Ichiro Takeuchi,
- Abstract要約: 1つのトレーニングデータセットを使用して、わずかに異なるデータ分布をまたいだ複数のモデルをトレーニングする、機械学習のセットアップについて検討する。
分散ロバスト(DR)最適化と安全なサンプルスクリーニング(SSS)を組み合わせたDRSSS法を提案する。
この方法の主な利点は、縮小データセットでトレーニングされたモデルが、可能なすべての異なる環境において、フルデータセットでトレーニングされたモデルと同等に実行されることである。
- 参考スコア(独自算出の注目度): 16.85444622474742
- License:
- Abstract: We consider a machine learning setup where one training dataset is used to train multiple models across slightly different data distributions. This occurs when customized models are needed for various deployment environments. To reduce storage and training costs, we propose the DRSSS method, which combines distributionally robust (DR) optimization and safe sample screening (SSS). The key benefit of this method is that models trained on the reduced dataset will perform the same as those trained on the full dataset for all possible different environments. In this paper, we focus on covariate shift as a type of data distribution change and demonstrate the effectiveness of our method through experiments.
- Abstract(参考訳): 1つのトレーニングデータセットを使用して、わずかに異なるデータ分布をまたいだ複数のモデルをトレーニングする、機械学習のセットアップについて検討する。
これは、さまざまなデプロイメント環境にカスタマイズされたモデルが必要な場合に発生する。
ストレージとトレーニングのコストを削減するため,分散ロバスト(DR)最適化と安全なサンプルスクリーニング(SSS)を組み合わせたDRSSS法を提案する。
この方法の主な利点は、縮小データセットでトレーニングされたモデルが、可能なすべての異なる環境において、フルデータセットでトレーニングされたモデルと同等に実行されることである。
本稿では,データ分散変化の一種としての共変量シフトに着目し,実験による手法の有効性を実証する。
関連論文リスト
- DOTA: Distributional Test-Time Adaptation of Vision-Language Models [52.98590762456236]
トレーニングフリーテスト時動的アダプタ(TDA)は、この問題に対処するための有望なアプローチである。
単体テスト時間適応法(Dota)の簡易かつ効果的な方法を提案する。
Dotaは継続的にテストサンプルの分布を推定し、モデルがデプロイメント環境に継続的に適応できるようにします。
論文 参考訳(メタデータ) (2024-09-28T15:03:28Z) - Distributionally Robust Safe Screening [14.973247943788234]
本稿では,不必要なサンプルや特徴を特定するために,分散ロバストセーフスクリーニング(DRSS)手法を提案する。
DRSS法を理論的に保証し、合成および実世界のデータセットの数値実験によりその性能を検証する。
論文 参考訳(メタデータ) (2024-04-25T04:29:25Z) - Training Implicit Generative Models via an Invariant Statistical Loss [3.139474253994318]
暗黙的な生成モデルは任意の複雑なデータ分布を学習する能力を持つ。
マイナス面として、トレーニングでは、敵対的判別器を使用して人工的に生成されたデータと実際のデータを区別する必要がある。
本研究では,1次元(1次元)生成暗黙的モデルを学習するための判別器フリーな手法を開発した。
論文 参考訳(メタデータ) (2024-02-26T09:32:28Z) - Which Pretrain Samples to Rehearse when Finetuning Pretrained Models? [60.59376487151964]
特定のタスクに関する微調整済みモデルが、テキストとビジョンタスクの事実上のアプローチになった。
このアプローチの落とし穴は、微調整中に起こる事前学習の知識を忘れることである。
本研究では,実際に忘れられているサンプルを識別・優先順位付けする新しいサンプリング手法であるmix-cdを提案する。
論文 参考訳(メタデータ) (2024-02-12T22:32:12Z) - Invariant Anomaly Detection under Distribution Shifts: A Causal
Perspective [6.845698872290768]
異常検出(AD、Anomaly Detection)は、異常なサンプルを識別する機械学習タスクである。
分散シフトの制約の下では、トレーニングサンプルとテストサンプルが同じ分布から引き出されるという仮定が崩壊する。
我々は,異常検出モデルのレジリエンスを,異なる種類の分布シフトに高めようとしている。
論文 参考訳(メタデータ) (2023-12-21T23:20:47Z) - Conformal Inference for Invariant Risk Minimization [12.049545417799125]
機械学習モデルの応用は、分布シフトの発生によって著しく阻害される可能性がある。
この問題を解決する一つの方法は、不変リスク最小化(IRM)のような不変学習を用いて不変表現を取得することである。
本稿では,不変表現に対する不確実性推定を記述するために,分布自由予測領域を得る手法を提案する。
論文 参考訳(メタデータ) (2023-05-22T03:48:38Z) - Data-Driven Approximations of Chance Constrained Programs in
Nonstationary Environments [3.126118485851773]
確率制約プログラムのサンプル平均近似(SAA)について検討する。
この問題の非定常変種を考えると、ランダムサンプルは逐次的に独立に描画されると仮定される。
本稿では,データ生成分布列と実確率制約分布との間のワッサーシュタイン距離の情報を利用した,ロバストなSAA手法を提案する。
論文 参考訳(メタデータ) (2022-05-08T01:01:57Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
ディープニューラルネットワークは、信頼できない不確実性推定で不正確な予測を行うことが多い。
分布シフトの下でのラベルなし入力とモデルパラメータとの明確に定義された関係を提供するベイズモデルを導出する。
本手法は精度と不確実性の両方を向上することを示す。
論文 参考訳(メタデータ) (2021-09-27T01:09:08Z) - Learning Calibrated Uncertainties for Domain Shift: A Distributionally
Robust Learning Approach [150.8920602230832]
ドメインシフトの下で校正された不確実性を学習するためのフレームワークを提案する。
特に、密度比推定は、ターゲット(テスト)サンプルの近さをソース(トレーニング)分布に反映する。
提案手法は下流タスクに有利な校正不確実性を生成する。
論文 参考訳(メタデータ) (2020-10-08T02:10:54Z) - Distributional Reinforcement Learning via Moment Matching [54.16108052278444]
ニューラルネットワークを用いて各戻り分布から統計量の有限集合を学習する手法を定式化する。
我々の手法は、戻り分布とベルマン目標の間のモーメントの全ての順序を暗黙的に一致させるものとして解釈できる。
Atariゲームスイートの実験により,本手法は標準分布RLベースラインよりも優れていることが示された。
論文 参考訳(メタデータ) (2020-07-24T05:18:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。