論文の概要: Decision-Making Behavior Evaluation Framework for LLMs under Uncertain Context
- arxiv url: http://arxiv.org/abs/2406.05972v2
- Date: Fri, 01 Nov 2024 00:50:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-04 14:33:49.826699
- Title: Decision-Making Behavior Evaluation Framework for LLMs under Uncertain Context
- Title(参考訳): 不確実条件下におけるLCMの意思決定行動評価フレームワーク
- Authors: Jingru Jia, Zehua Yuan, Junhao Pan, Paul E. McNamara, Deming Chen,
- Abstract要約: 本稿では,大規模言語モデル(LLM)の意思決定行動を評価するための行動経済学に基づく枠組みを提案する。
本稿では,ChatGPT-4.0-Turbo,Claude-3-Opus,Gemini-1.0-proの3つの商用LCMにおけるリスク嗜好,確率重み付け,損失回避の程度を推定する。
以上の結果から,LSMはリスク回避や損失回避といった人間に類似したパターンを呈し,その傾向は小さすぎることが示唆された。
- 参考スコア(独自算出の注目度): 5.361970694197912
- License:
- Abstract: When making decisions under uncertainty, individuals often deviate from rational behavior, which can be evaluated across three dimensions: risk preference, probability weighting, and loss aversion. Given the widespread use of large language models (LLMs) in decision-making processes, it is crucial to assess whether their behavior aligns with human norms and ethical expectations or exhibits potential biases. Several empirical studies have investigated the rationality and social behavior performance of LLMs, yet their internal decision-making tendencies and capabilities remain inadequately understood. This paper proposes a framework, grounded in behavioral economics, to evaluate the decision-making behaviors of LLMs. Through a multiple-choice-list experiment, we estimate the degree of risk preference, probability weighting, and loss aversion in a context-free setting for three commercial LLMs: ChatGPT-4.0-Turbo, Claude-3-Opus, and Gemini-1.0-pro. Our results reveal that LLMs generally exhibit patterns similar to humans, such as risk aversion and loss aversion, with a tendency to overweight small probabilities. However, there are significant variations in the degree to which these behaviors are expressed across different LLMs. We also explore their behavior when embedded with socio-demographic features, uncovering significant disparities. For instance, when modeled with attributes of sexual minority groups or physical disabilities, Claude-3-Opus displays increased risk aversion, leading to more conservative choices. These findings underscore the need for careful consideration of the ethical implications and potential biases in deploying LLMs in decision-making scenarios. Therefore, this study advocates for developing standards and guidelines to ensure that LLMs operate within ethical boundaries while enhancing their utility in complex decision-making environments.
- Abstract(参考訳): 不確実性の下で意思決定を行う場合、個人はしばしば合理的行動から逸脱し、リスク優先、確率重み付け、損失回避の3つの次元で評価することができる。
意思決定プロセスにおける大規模言語モデル(LLM)の普及を考えると、その行動が人間の規範や倫理的期待と一致しているか、潜在的なバイアスを示すかを評価することが重要である。
いくつかの実証的研究は、LLMの合理性と社会的行動性能について研究しているが、その内部決定の傾向と能力は不適切なままである。
本稿では, LLMの意思決定行動を評価するための行動経済学に基づく枠組みを提案する。
複数選択リスト実験により,ChatGPT-4.0-Turbo,Claude-3-Opus,Gemini-1.0-proの3つの商用LCMの文脈自由設定におけるリスク選択,確率重み付け,損失回避の程度を推定した。
以上の結果から,LSMはリスク回避や損失回避といった人間に類似したパターンを呈し,その傾向は小さすぎることが示唆された。
しかし、これらの振る舞いが異なるLLM間で表現される程度には、大きなバリエーションがある。
また,社会デミノグラフィー的特徴を組み込んだ場合の行動についても検討し,重要な差異を明らかにした。
例えば、性的少数派や身体障害の属性でモデル化された場合、Claude-3-Opusはリスク回避を増大させ、より保守的な選択をもたらす。
これらの知見は, 意思決定シナリオにおけるLCMの展開における倫理的含意と潜在的なバイアスについて, 慎重に検討することの必要性を浮き彫りにした。
そこで本研究では,LLMが複雑な意思決定環境において実用性を高めつつ,倫理的境界内での運用を保証するための基準とガイドラインの開発を提唱する。
関連論文リスト
- Diverging Preferences: When do Annotators Disagree and do Models Know? [92.24651142187989]
我々は,4つのハイレベルクラスにまたがる10のカテゴリにまたがる相違点の分類法を開発した。
意見の相違の大部分は、標準的な報酬モデリングアプローチに反対している。
本研究は,選好の変化を識別し,評価とトレーニングへの影響を緩和する手法を開発する。
論文 参考訳(メタデータ) (2024-10-18T17:32:22Z) - Gender Bias of LLM in Economics: An Existentialism Perspective [1.024113475677323]
本稿では,大言語モデル(LLM)における性別バイアスについて検討する。
LLMは、明示的なジェンダーマーカーなしでもジェンダーステレオタイプを補強する。
LLMのバイアスは意図しない欠陥ではなく、合理的な処理の体系的な結果であると主張する。
論文 参考訳(メタデータ) (2024-10-14T01:42:01Z) - AI Can Be Cognitively Biased: An Exploratory Study on Threshold Priming in LLM-Based Batch Relevance Assessment [37.985947029716016]
大規模言語モデル(LLM)は高度な理解能力を示しているが、トレーニングデータから人間のバイアスを継承する可能性がある。
関連判定におけるしきい値プライミング効果の影響について検討した。
論文 参考訳(メタデータ) (2024-09-24T12:23:15Z) - Metacognitive Myopia in Large Language Models [0.0]
大規模言語モデル(LLM)は、文化的に固有のステレオタイプ、クラウドの道徳的判断、あるいは多数派の肯定的な評価を強化する潜在的に有害なバイアスを示す。
認知・生態的枠組みとしてメタ認知ミオピアを提案する。
我々の理論的枠組みは, メタ認知, 監視, 制御の2つの要素が欠如していることが, メタ認知性ミオピアの5つの症状を引き起こすことを示唆している。
論文 参考訳(メタデータ) (2024-08-10T14:43:57Z) - CEB: Compositional Evaluation Benchmark for Fairness in Large Language Models [58.57987316300529]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクを処理するために、ますます多くデプロイされている。
LLMが示すバイアスを評価するために、研究者は最近、様々なデータセットを提案している。
我々は,様々な社会的グループやタスクにまたがる様々なバイアスをカバーした構成的評価ベンチマークであるCEBを提案する。
論文 参考訳(メタデータ) (2024-07-02T16:31:37Z) - Beyond Human Norms: Unveiling Unique Values of Large Language Models through Interdisciplinary Approaches [69.73783026870998]
本研究では,大言語モデルの固有値システムをスクラッチから再構築する新しいフレームワークであるValueLexを提案する。
語彙仮説に基づいて、ValueLexは30以上のLLMから様々な値を引き出すための生成的アプローチを導入している。
我々は,3つのコア値次元,能力,キャラクタ,積分をそれぞれ特定の部分次元で同定し,LLMが非人間的だが構造化された価値体系を持っていることを明らかにした。
論文 参考訳(メタデータ) (2024-04-19T09:44:51Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
大規模言語モデル(LLM)は、システムの異なる部分への介入の下で因果効果を推定することができる。
LLMが介入に応じてデータ生成プロセスの知識を正確に更新できるかどうかを実証分析して評価する。
我々は、様々な因果グラフ(例えば、コンバウンディング、仲介)と変数タイプにまたがるベンチマークを作成し、介入に基づく推論の研究を可能にする。
論文 参考訳(メタデータ) (2024-04-08T14:15:56Z) - Explaining Large Language Models Decisions with Shapley Values [1.223779595809275]
大規模言語モデル(LLM)は、人間の行動や認知過程をシミュレートするエキサイティングな可能性を開いた。
しかし, LLMを人体用スタンドインとして活用する妥当性は, いまだに不明である。
本稿では,モデルの出力に対する各プロンプト成分の相対的寄与を定量化するために,シェープリー値に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-29T22:49:43Z) - Auditing Fairness under Unobserved Confounding [56.61738581796362]
リスクファクターがすべて観察されているという仮定を完全に取り除いたり緩和したりしても、ハイリスクな個人に治療率に有意義な限界を与えることができることを示す。
既存の意思決定システムの不公平な結果を原則的に評価することができる。
論文 参考訳(メタデータ) (2024-03-18T21:09:06Z) - Prejudice and Volatility: A Statistical Framework for Measuring Social Discrimination in Large Language Models [0.0]
本研究では,Large Language Models (LLMs) の生成における不整合が社会的不正を誘発し,さらに悪化させる可能性について検討した。
LLMを評価するための行動指標を正確に定義するPrejudice-Volatility Framework(PVF)を定式化する。
我々は,LLMの集合的差別リスクを,システムバイアスやボラティリティリスクから生じる偏見リスクに数学的に分解する。
論文 参考訳(メタデータ) (2024-02-23T18:15:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。