論文の概要: Distributive Fairness in Large Language Models: Evaluating Alignment with Human Values
- arxiv url: http://arxiv.org/abs/2502.00313v1
- Date: Sat, 01 Feb 2025 04:24:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:03:14.738840
- Title: Distributive Fairness in Large Language Models: Evaluating Alignment with Human Values
- Title(参考訳): 大規模言語モデルにおける分配的公正性:人間の価値によるアライメントの評価
- Authors: Hadi Hosseini, Samarth Khanna,
- Abstract要約: 多くの社会的問題は資源の分配に関係しており、公平さと経済効率は結果の望ましさにおいて重要な役割を担っている。
本稿では,大規模言語モデル (LLM) が基本的公平性の概念に準拠しているかどうかを考察し,人間の嗜好との整合性について検討する。
- 参考スコア(独自算出の注目度): 13.798198972161657
- License:
- Abstract: The growing interest in employing large language models (LLMs) for decision-making in social and economic contexts has raised questions about their potential to function as agents in these domains. A significant number of societal problems involve the distribution of resources, where fairness, along with economic efficiency, play a critical role in the desirability of outcomes. In this paper, we examine whether LLM responses adhere to fundamental fairness concepts such as equitability, envy-freeness, and Rawlsian maximin, and investigate their alignment with human preferences. We evaluate the performance of several LLMs, providing a comparative benchmark of their ability to reflect these measures. Our results demonstrate a lack of alignment between current LLM responses and human distributional preferences. Moreover, LLMs are unable to utilize money as a transferable resource to mitigate inequality. Nonetheless, we demonstrate a stark contrast when (some) LLMs are tasked with selecting from a predefined menu of options rather than generating one. In addition, we analyze the robustness of LLM responses to variations in semantic factors (e.g. intentions or personas) or non-semantic prompting changes (e.g. templates or orderings). Finally, we highlight potential strategies aimed at enhancing the alignment of LLM behavior with well-established fairness concepts.
- Abstract(参考訳): 社会的・経済的文脈における意思決定に大規模言語モデル(LLM)を採用することへの関心が高まり、これらの領域でエージェントとして機能する可能性についての疑問が持ち上がっている。
社会問題の多くは、公平さと経済効率が結果の望ましさに重要な役割を果たす資源の分配に関係している。
本稿では,LLM応答が等価性,エンビ自由性,Rawlsian maximinなどの基本的な公正性概念に適合するかどうかを考察し,人間の嗜好との整合性について検討する。
我々は,複数のLCMの性能評価を行い,これらの測定結果を比較評価した。
以上の結果から,現在のLLM応答とヒトの分布選好との整合性の欠如が示唆された。
さらに、LLMは不平等を緩和するために送金可能な資源としてお金を利用することができない。
それでも、(一部) LLM が、オプションの生成ではなく、予め定義されたメニューから選択される場合のコントラストを示す。
さらに、意味的要因(例えば、意図やペルソナ)や非意味的促進的変化(例えば、テンプレートや順序)の変動に対するLLM応答のロバスト性を分析する。
最後に,LLM行動の整合性を高めるための潜在的戦略を,確立された公正性の概念で強調する。
関連論文リスト
- Chat Bankman-Fried: an Exploration of LLM Alignment in Finance [4.892013668424246]
司法管轄区域はAIの安全性に関する法律を制定するので、アライメントの概念を定義して測定する必要がある。
本稿では,大規模言語モデル(LLM)が比較的未探索の財務状況において,倫理的・法的基準に準拠するか否かを評価するための実験的枠組みを提案する。
論文 参考訳(メタデータ) (2024-11-01T08:56:17Z) - Gender Bias of LLM in Economics: An Existentialism Perspective [1.024113475677323]
本稿では,大言語モデル(LLM)における性別バイアスについて検討する。
LLMは、明示的なジェンダーマーカーなしでもジェンダーステレオタイプを補強する。
LLMのバイアスは意図しない欠陥ではなく、合理的な処理の体系的な結果であると主張する。
論文 参考訳(メタデータ) (2024-10-14T01:42:01Z) - Uncovering Factor Level Preferences to Improve Human-Model Alignment [58.50191593880829]
PROFILEは、好みを駆動する特定の要因の影響を明らかにし、定量化するフレームワークである。
ProFILE の因子レベル分析は、人間モデルのアライメントと不適応の背後にある 'なぜ' を説明している。
我々は、不整合要因に対処するなど、要因レベルの洞察の活用が、人間の嗜好との整合性をいかに改善するかを実証する。
論文 参考訳(メタデータ) (2024-10-09T15:02:34Z) - Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
多くの領域で優れているにもかかわらず、潜在的な問題は未解決のままであり、その信頼性と実用性の範囲を損なう。
提案手法は, LLM-as-a-Judgeにおける各種類のバイアスを定量化し, 解析する自動バイアス定量化フレームワークである。
当社の作業は、これらの問題に対処するステークホルダの必要性を強調し、LLM-as-a-Judgeアプリケーションで注意を喚起します。
論文 参考訳(メタデータ) (2024-10-03T17:53:30Z) - Explaining Large Language Models Decisions Using Shapley Values [1.223779595809275]
大規模言語モデル(LLM)は、人間の行動や認知過程をシミュレートするエキサイティングな可能性を開いた。
しかし, LLMを人体用スタンドインとして活用する妥当性は, いまだに不明である。
本稿では,モデルの出力に対する各プロンプト成分の相対的寄与を定量化するために,シェープリー値に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-29T22:49:43Z) - Few-Shot Fairness: Unveiling LLM's Potential for Fairness-Aware
Classification [7.696798306913988]
フェアネス定義に適合するフェアネス規則を概説する枠組みを導入する。
本稿では,テキスト内学習のための構成と,RAGを用いてテキスト内デモを選択する手順について検討する。
異なるLCMを用いて行った実験では、GPT-4は他のモデルと比較して精度と公平性の両方において優れた結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-02-28T17:29:27Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
LLM(Large-Language-Models)は幅広いアプリケーションにデプロイされ、その応答は社会的影響を増大させる。
価値バイアスは、人間の研究結果と同様、異なるカテゴリにわたるLSMにおいて強いことが示される。
論文 参考訳(メタデータ) (2024-02-16T18:28:43Z) - Do LLM Agents Exhibit Social Behavior? [5.094340963261968]
State-Understanding-Value-Action (SUVA) は、社会的文脈における応答を体系的に分析するフレームワークである。
最終決定とそれにつながる反応生成プロセスの両方を通じて社会的行動を評価する。
発話に基づく推論がLLMの最終動作を確実に予測できることを実証する。
論文 参考訳(メタデータ) (2023-12-23T08:46:53Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - Heterogeneous Value Alignment Evaluation for Large Language Models [91.96728871418]
大規模言語モデル(LLM)は、その価値を人間のものと整合させることを重要視している。
本研究では,LLMと不均一値の整合性を評価するため,不均一値アライメント評価(HVAE)システムを提案する。
論文 参考訳(メタデータ) (2023-05-26T02:34:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。