論文の概要: Explainable AI for Mental Disorder Detection via Social Media: A survey and outlook
- arxiv url: http://arxiv.org/abs/2406.05984v1
- Date: Mon, 10 Jun 2024 02:51:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 15:06:21.976709
- Title: Explainable AI for Mental Disorder Detection via Social Media: A survey and outlook
- Title(参考訳): ソーシャルメディアによる精神障害検出のための説明可能なAI:調査と展望
- Authors: Yusif Ibrahimov, Tarique Anwar, Tommy Yuan,
- Abstract要約: データサイエンス、人工知能、メンタルヘルスケアの交差点を徹底的に調査する。
人口の大部分がオンラインソーシャルメディアプラットフォームに積極的に関与し、膨大な個人情報を保管している。
この論文は、従来の診断方法、最先端のデータおよびAI駆動型研究研究、および精神医療のための説明可能なAIモデル(XAI)の出現をナビゲートする。
- 参考スコア(独自算出の注目度): 0.7689629183085726
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Mental health constitutes a complex and pervasive global challenge, affecting millions of lives and often leading to severe consequences. In this paper, we conduct a thorough survey to explore the intersection of data science, artificial intelligence, and mental healthcare, focusing on the recent developments of mental disorder detection through online social media (OSM). A significant portion of the population actively engages in OSM platforms, creating a vast repository of personal data that holds immense potential for mental health analytics. The paper navigates through traditional diagnostic methods, state-of-the-art data- and AI-driven research studies, and the emergence of explainable AI (XAI) models for mental healthcare. We review state-of-the-art machine learning methods, particularly those based on modern deep learning, while emphasising the need for explainability in healthcare AI models. The experimental design section provides insights into prevalent practices, including available datasets and evaluation approaches. We also identify key issues and challenges in the field and propose promising future research directions. As mental health decisions demand transparency, interpretability, and ethical considerations, this paper contributes to the ongoing discourse on advancing XAI in mental healthcare through social media. The comprehensive overview presented here aims to guide researchers, practitioners, and policymakers in developing the area of mental disorder detection.
- Abstract(参考訳): メンタルヘルスは複雑で広範にわたる世界的な課題であり、数百万人の命に影響を与え、しばしば深刻な結果をもたらす。
本稿では、オンラインソーシャルメディア(OSM)による精神障害検出の最近の進展に着目し、データサイエンス、人工知能、メンタルヘルスの交わりを徹底的に調査する。
人口のかなりの部分はOSMプラットフォームに積極的に関わっており、メンタルヘルス分析の大きな可能性を秘めている個人データの巨大なリポジトリを作成している。
この論文は、従来の診断方法、最先端のデータおよびAI駆動型研究研究、および精神医療のための説明可能なAIモデル(XAI)の出現をナビゲートする。
医療AIモデルにおける説明可能性の必要性を強調しながら、最先端の機械学習手法、特に現代のディープラーニングに基づく手法についてレビューする。
実験的なデザインセクションは、利用可能なデータセットや評価アプローチを含む、一般的なプラクティスに関する洞察を提供する。
また、この分野における重要な課題と課題を特定し、将来的な研究の方向性を提案する。
メンタルヘルスの決定が透明性、解釈可能性、倫理的考察を要求される中、ソーシャルメディアを通じたメンタルヘルスにおけるXAIの進展に関する議論の進行に寄与する。
ここで紹介する総合的な概要は、精神障害検出の分野の開発において、研究者、実践家、政策立案者を導くことを目的としている。
関連論文リスト
- A Survey of Stance Detection on Social Media: New Directions and Perspectives [50.27382951812502]
姿勢検出は 感情コンピューティングにおける 重要なサブフィールドとして現れました
近年は、効果的な姿勢検出手法の開発に対する研究の関心が高まっている。
本稿では,ソーシャルメディア上での姿勢検出手法に関する包括的調査を行う。
論文 参考訳(メタデータ) (2024-09-24T03:06:25Z) - Multimodal Machine Learning in Mental Health: A Survey of Data, Algorithms, and Challenges [14.632649933582648]
メンタルヘルス障害の検出、診断、治療における機械学習(ML)の適用は、注目を集めている。
マルチモーダルMLは、複数のモーダルからの情報を組み合わせることで、大きな可能性を証明している。
その可能性にもかかわらず、メンタルヘルスにおけるマルチモーダルMLはいまだ発展途上であり、実用的な応用が効果的に開発される前に、いくつかの複雑な課題に直面している。
論文 参考訳(メタデータ) (2024-07-23T19:07:56Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
本研究の目的は,認知診断の現在のモデルについて,機械学習を用いた新たな展開に注目した調査を行うことである。
モデル構造,パラメータ推定アルゴリズム,モデル評価方法,適用例を比較して,認知診断モデルの最近の傾向を概観する。
論文 参考訳(メタデータ) (2024-07-07T18:02:00Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Challenges of Large Language Models for Mental Health Counseling [4.604003661048267]
世界のメンタルヘルス危機は、精神疾患の急速な増加、限られた資源、治療を求める社会的便宜によって悪化している。
メンタルヘルス領域における大規模言語モデル(LLM)の適用は、提供された情報の正確性、有効性、信頼性に関する懸念を提起する。
本稿では, モデル幻覚, 解釈可能性, バイアス, プライバシ, 臨床効果など, 心理カウンセリングのためのLSMの開発に伴う課題について検討する。
論文 参考訳(メタデータ) (2023-11-23T08:56:41Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
本研究では,認知的歪み検出の課題について検討し,思考の早期発見(DoT)を提案する。
DoTは、事実と思考を分離するための主観的評価、思考と矛盾する推論プロセスを引き出すための対照的な推論、認知スキーマを要約するスキーマ分析という3つの段階を通して、患者のスピーチの診断を行う。
実験により、DoTは認知的歪み検出のためのChatGPTよりも大幅に改善され、一方で人間の専門家が承認した高品質な合理性を生成することが示された。
論文 参考訳(メタデータ) (2023-10-11T02:47:21Z) - An Annotated Dataset for Explainable Interpersonal Risk Factors of
Mental Disturbance in Social Media Posts [0.0]
ソーシャルメディア上での精神障害に影響を及ぼす人為的リスクファクター(IRF)の分類と説明を伴う注釈付きデータセットの構築とリリースを行う。
我々は,TBeとPBuのパターンをユーザの歴史的ソーシャルメディアプロファイルの感情スペクトルで検出することにより,将来的な研究方向のベースラインモデルを構築し,リアルタイムなパーソナライズされたAIモデルを開発する。
論文 参考訳(メタデータ) (2023-05-30T04:08:40Z) - Predicting mental health using social media: A roadmap for future
development [0.0]
うつ病や自殺などの精神障害は、世界中で3億人以上の人々に影響を及ぼす。
ソーシャルメディア上では、精神障害の症状が観察され、自動化されたアプローチがそれらを検出する能力が高まっている。
この研究は、精神状態検出を機械学習技術に基づいて行うことができる分析のロードマップを提供する。
論文 参考訳(メタデータ) (2023-01-25T08:08:29Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
説明可能なAI(XAI)を評価するために,ユーザ中心のペルソナ概念を提案する。
分析の結果,ユーザの人口統計や性格,説明のタイプ,影響説明の嗜好が示された。
私たちの洞察は、対話的で人間中心のXAIを実践的な応用に近づけます。
論文 参考訳(メタデータ) (2022-10-07T12:51:27Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
世界保健機関(WHO)によると、約4億5000万人が影響を受ける。
うつ病、不安症、双極性障害、ADHD、PTSDなどの精神疾患。
本研究では、Redditプラットフォーム上の非構造化ユーザデータを分析し、うつ病、不安、双極性障害、ADHD、PTSDの5つの一般的な精神疾患を分類する。
論文 参考訳(メタデータ) (2022-07-03T11:33:52Z) - Achievements and Challenges in Explaining Deep Learning based
Computer-Aided Diagnosis Systems [4.9449660544238085]
我々は、既知の疾患基準の検証のための説明可能なAIの開発における初期の成果について論じる。
我々は、臨床意思決定支援ツールとしてのAIの実践的応用の道に立つ、残る課題をいくつか強調する。
論文 参考訳(メタデータ) (2020-11-26T08:08:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。