論文の概要: A Dual-View Approach to Classifying Radiology Reports by Co-Training
- arxiv url: http://arxiv.org/abs/2406.05995v1
- Date: Mon, 10 Jun 2024 03:29:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 15:06:21.964866
- Title: A Dual-View Approach to Classifying Radiology Reports by Co-Training
- Title(参考訳): 共同診察による放射線学レポートの分類に関する2視点的アプローチ
- Authors: Yutong Han, Yan Yuan, Lili Mou,
- Abstract要約: 我々は,放射線学レポートの構造が放射線学スキャンの異なる視点を提供するという新たな知見を提示する。
本研究では,FinderingsとImpressionセクション上に2つの機械学習モデルを構築する,協調学習手法を提案する。
その結果,協調学習手法は2つのビューで性能を向上し,教師付き手法や半教師付き手法に勝ることが示唆された。
- 参考スコア(独自算出の注目度): 21.54861547826838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radiology report analysis provides valuable information that can aid with public health initiatives, and has been attracting increasing attention from the research community. In this work, we present a novel insight that the structure of a radiology report (namely, the Findings and Impression sections) offers different views of a radiology scan. Based on this intuition, we further propose a co-training approach, where two machine learning models are built upon the Findings and Impression sections, respectively, and use each other's information to boost performance with massive unlabeled data in a semi-supervised manner. We conducted experiments in a public health surveillance study, and results show that our co-training approach is able to improve performance using the dual views and surpass competing supervised and semi-supervised methods.
- Abstract(参考訳): 放射線医学レポート分析は、公衆衛生イニシアチブに役立つ貴重な情報を提供し、研究コミュニティから注目を集めている。
本研究では, 放射線学レポートの構造(すなわち, Findings と Impression セクション)が, 放射線学スキャンの異なる視点を提供するという, 新たな知見を提示する。
この直感に基づいて、2つの機械学習モデルがそれぞれFinderingsとImpressionセクション上に構築され、相互の情報を用いて、大量のラベルのないデータを用いて半教師付きでパフォーマンスを向上させる、協調学習手法を提案する。
公衆衛生監視研究で実験を行った結果,両視点による協調学習手法は,両視点で性能を向上し,指導的・半監督的な手法に勝るものであることが示唆された。
関連論文リスト
- RadBARTsum: Domain Specific Adaption of Denoising Sequence-to-Sequence Models for Abstractive Radiology Report Summarization [1.8450534779202723]
本研究では,抽象的放射線学レポート要約のためのドメイン固有かつ容易なBARTモデルの適応であるRadBARTsumを提案する。
本手法は,1)生物医学領域の知識学習を改善するための新しい実体マスキング戦略を用いて,放射線学報告の大規模コーパス上でBARTモデルを再学習すること,2)印象区間を予測するためにFindersとバックグラウンドセクションを用いて要約タスクのモデルを微調整すること,の2つの段階を含む。
論文 参考訳(メタデータ) (2024-06-05T08:43:11Z) - Ultrasound Report Generation with Cross-Modality Feature Alignment via Unsupervised Guidance [37.37279393074854]
教師なしおよび教師なしの学習手法を併用した,超音波自動レポート生成のための新しいフレームワークを提案する。
本フレームワークは,超音波テキストレポートから潜在的知識を抽出するための教師なし学習手法を取り入れている。
我々は、より包括的で正確な医療報告を生成する能力を高めるために、グローバルな意味比較機構を設計する。
論文 参考訳(メタデータ) (2024-06-02T07:16:58Z) - MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
本稿では、画像テキストのコントラスト学習を通じて、言語情報を視覚領域に統合するための案内信号として、ドメイン固有の医療知識を活用する新しいフレームワークを提案する。
我々のモデルには、設計した分散エンコーダによるグローバルコントラスト学習、局所トークン・知識・パッチアライメントコントラスト学習、知識誘導型カテゴリレベルのコントラスト学習、エキスパートナレッジによるコントラスト学習が含まれる。
特に、MLIPは、限られた注釈付きデータであっても最先端の手法を超越し、医療表現学習の進歩におけるマルチモーダル事前学習の可能性を強調している。
論文 参考訳(メタデータ) (2024-02-03T05:48:50Z) - Evaluating General Purpose Vision Foundation Models for Medical Image Analysis: An Experimental Study of DINOv2 on Radiology Benchmarks [5.8941124219471055]
DINOv2はオープンソースのファンデーションモデルで、1億4200万のキュレートされた自然画像に対する自己教師付き学習を事前訓練している。
本研究は放射線学におけるDINOv2の性能を総合的に評価する。
論文 参考訳(メタデータ) (2023-12-04T21:47:10Z) - A Survey of the Impact of Self-Supervised Pretraining for Diagnostic
Tasks with Radiological Images [71.26717896083433]
自己教師付き事前学習は,伝達学習における特徴表現の改善に有効であることが観察されている。
本総説ではX線, CT, 磁気共鳴, 超音波画像における使用法について概説する。
論文 参考訳(メタデータ) (2023-09-05T19:45:09Z) - A Novel Collaborative Self-Supervised Learning Method for Radiomic Data [3.5213632537596604]
本稿では,ラベル付き無線データ不足の課題を解決するための,新しい自己教師型学習手法を提案する。
提案手法は, 放射線データから頑健な潜在特徴表現を自己指導的に学習し, 人間のアノテーションの取り組みを減らした。
論文 参考訳(メタデータ) (2023-02-20T07:15:28Z) - Improving Radiology Summarization with Radiograph and Anatomy Prompts [60.30659124918211]
本稿では,印象生成を促進するために,新しい解剖学的拡張型マルチモーダルモデルを提案する。
より詳しくは、まず、解剖学を抽出する一連のルールを構築し、各文にこれらのプロンプトを配置し、解剖学的特徴を強調する。
コントラスト学習モジュールを用いて、これらの2つの表現を全体レベルで整列させ、コアテンションを用いて文レベルで融合させる。
論文 参考訳(メタデータ) (2022-10-15T14:05:03Z) - Stain based contrastive co-training for histopathological image analysis [61.87751502143719]
本稿では,ヒストリボリューション画像の分類のための,新しい半教師付き学習手法を提案する。
我々は、半教師付き学習フレームワークを作成するために、パッチレベルのアノテーションと、新しいコトレーニング損失を併用した強力な監視を採用する。
透明細胞腎細胞および前立腺癌に対するアプローチを評価し,最先端の半教師あり学習法の改善を実証した。
論文 参考訳(メタデータ) (2022-06-24T22:25:31Z) - Radiology Report Generation with a Learned Knowledge Base and
Multi-modal Alignment [27.111857943935725]
胸部X線からのレポート生成のための自動マルチモーダルアプローチを提案する。
本手法は,学習知識ベースとマルチモーダルアライメントの2つの異なるモジュールを特徴とする。
両モジュールの助けを借りて、我々のアプローチは明らかに最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2021-12-30T10:43:56Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
代替薬に対する患者一人の反応など,個人レベルの因果効果の推定について検討した。
我々は,表現の誘導的処理群距離を正規化することにより,境界を最小化する表現学習アルゴリズムを考案した。
これらのアルゴリズムを拡張して、重み付き表現を同時に学習し、治療群距離をさらに削減する。
論文 参考訳(メタデータ) (2020-01-21T10:16:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。