HOLMES: Hyper-Relational Knowledge Graphs for Multi-hop Question Answering using LLMs
- URL: http://arxiv.org/abs/2406.06027v1
- Date: Mon, 10 Jun 2024 05:22:49 GMT
- Title: HOLMES: Hyper-Relational Knowledge Graphs for Multi-hop Question Answering using LLMs
- Authors: Pranoy Panda, Ankush Agarwal, Chaitanya Devaguptapu, Manohar Kaul, Prathosh A P,
- Abstract summary: Large Language Models (LLMs) are adept at answering simple (single-hop) questions.
As the complexity of the questions increase, the performance of LLMs degrades.
Recent methods try to reduce this burden by integrating structured knowledge triples into the raw text.
We propose to use a knowledge graph (KG) that is context-aware and is distilled to contain query-relevant information.
- Score: 9.559336828884808
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Given unstructured text, Large Language Models (LLMs) are adept at answering simple (single-hop) questions. However, as the complexity of the questions increase, the performance of LLMs degrade. We believe this is due to the overhead associated with understanding the complex question followed by filtering and aggregating unstructured information in the raw text. Recent methods try to reduce this burden by integrating structured knowledge triples into the raw text, aiming to provide a structured overview that simplifies information processing. However, this simplistic approach is query-agnostic and the extracted facts are ambiguous as they lack context. To address these drawbacks and to enable LLMs to answer complex (multi-hop) questions with ease, we propose to use a knowledge graph (KG) that is context-aware and is distilled to contain query-relevant information. The use of our compressed distilled KG as input to the LLM results in our method utilizing up to $67\%$ fewer tokens to represent the query relevant information present in the supporting documents, compared to the state-of-the-art (SoTA) method. Our experiments show consistent improvements over the SoTA across several metrics (EM, F1, BERTScore, and Human Eval) on two popular benchmark datasets (HotpotQA and MuSiQue).
Related papers
- BRIEF: Bridging Retrieval and Inference for Multi-hop Reasoning via Compression [91.23933111083389]
BRIEF (Bridging Retrieval and Inference through Evidence Fusion) is a lightweight approach that performs query-aware multi-hop reasoning.
Based on our synthetic data built entirely by open-source models, BRIEF generates more concise summaries.
arXiv Detail & Related papers (2024-10-20T04:24:16Z) - Contri(e)ve: Context + Retrieve for Scholarly Question Answering [0.0]
We present a two step solution using open source Large Language Model(LLM): Llama3.1 for Scholarly-QALD dataset.
Firstly, we extract the context pertaining to the question from different structured and unstructured data sources.
Secondly, we implement prompt engineering to improve the information retrieval performance of the LLM.
arXiv Detail & Related papers (2024-09-13T17:38:47Z) - MFORT-QA: Multi-hop Few-shot Open Rich Table Question Answering [3.1651118728570635]
In today's fast-paced industry, professionals face the challenge of summarizing a large number of documents and extracting vital information from them on a daily basis.
To address this challenge, the approach of Table Question Answering (QA) has been developed to extract the relevant information.
Recent advancements in Large Language Models (LLMs) have opened up new possibilities for extracting information from tabular data using prompts.
arXiv Detail & Related papers (2024-03-28T03:14:18Z) - SPARQL Generation: an analysis on fine-tuning OpenLLaMA for Question
Answering over a Life Science Knowledge Graph [0.0]
We evaluate strategies for fine-tuning the OpenLlama LLM for question answering over life science knowledge graphs.
We propose an end-to-end data augmentation approach for extending a set of existing queries over a given knowledge graph.
We also investigate the role of semantic "clues" in the queries, such as meaningful variable names and inline comments.
arXiv Detail & Related papers (2024-02-07T07:24:01Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - An In-Context Schema Understanding Method for Knowledge Base Question
Answering [70.87993081445127]
Large Language Models (LLMs) have shown strong capabilities in language understanding and can be used to solve this task.
Existing methods bypass this challenge by initially employing LLMs to generate drafts of logic forms without schema-specific details.
We propose a simple In-Context Understanding (ICSU) method that enables LLMs to directly understand schemas by leveraging in-context learning.
arXiv Detail & Related papers (2023-10-22T04:19:17Z) - A Simple Baseline for Knowledge-Based Visual Question Answering [78.00758742784532]
This paper is on the problem of Knowledge-Based Visual Question Answering (KB-VQA)
Our main contribution in this paper is to propose a much simpler and readily reproducible pipeline.
Contrary to recent approaches, our method is training-free, does not require access to external databases or APIs, and achieves state-of-the-art accuracy on the OK-VQA and A-OK-VQA datasets.
arXiv Detail & Related papers (2023-10-20T15:08:17Z) - Successive Prompting for Decomposing Complex Questions [50.00659445976735]
Recent works leverage the capabilities of large language models (LMs) to perform complex question answering in a few-shot setting.
We introduce Successive Prompting'', where we iteratively break down a complex task into a simple task, solve it, and then repeat the process until we get the final solution.
Our best model (with successive prompting) achieves an improvement of 5% absolute F1 on a few-shot version of the DROP dataset.
arXiv Detail & Related papers (2022-12-08T06:03:38Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.