MATES: Model-Aware Data Selection for Efficient Pretraining with Data Influence Models
- URL: http://arxiv.org/abs/2406.06046v2
- Date: Sat, 16 Nov 2024 02:59:22 GMT
- Title: MATES: Model-Aware Data Selection for Efficient Pretraining with Data Influence Models
- Authors: Zichun Yu, Spandan Das, Chenyan Xiong,
- Abstract summary: Current data selection methods, which rely on either hand-crafted rules or larger reference models, are conducted statically and do not capture the evolving data preferences during pretraining.
We introduce model-aware data selection with data influence models (MATES), where a data influence model continuously adapts to the evolving data preferences of the pretraining model and then selects the data most effective for the current pretraining progress.
Experiments of pretraining 410M and 1B models on the C4 dataset demonstrate that MATES significantly outperforms random data selection on extensive downstream tasks.
- Score: 16.654859430784825
- License:
- Abstract: Pretraining data selection has the potential to improve language model pretraining efficiency by utilizing higher-quality data from massive web data corpora. Current data selection methods, which rely on either hand-crafted rules or larger reference models, are conducted statically and do not capture the evolving data preferences during pretraining. In this paper, we introduce model-aware data selection with data influence models (MATES), where a data influence model continuously adapts to the evolving data preferences of the pretraining model and then selects the data most effective for the current pretraining progress. Specifically, we collect oracle data influence by locally probing the pretraining model and fine-tune a small data influence model to approximate it accurately. The data influence model then predicts data influence over the whole pretraining corpus and selects the most influential data for the next pretraining stage. Experiments of pretraining 410M and 1B models on the C4 dataset demonstrate that MATES significantly outperforms random data selection on extensive downstream tasks. It doubles the gains achieved by the state-of-the-art data selection approach that leverages larger reference models and reduces the total FLOPs required to reach certain performances by half. Further analyses validate the effectiveness of the locally probed oracle data influence and the approximation with data influence models. Our code is open-sourced at https://github.com/cxcscmu/MATES.
Related papers
- Optimizing LLMs with Direct Preferences: A Data Efficiency Perspective [4.548047308860141]
This study investigates the impact of different type of preference data on model performance.
It aims to reduce their dependency on extensive amounts of preference data, which is expensive to collect.
arXiv Detail & Related papers (2024-10-22T00:11:41Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - Optimizing V-information for Self-Supervised Pre-training Data-Effective Medical Foundation Models [15.413974936297082]
Self-supervised pre-training medical foundation models on large-scale datasets demonstrate exceptional performance.
Data-effective learning approaches have been introduced to select valuable samples for foundation model pre-training.
We develop an optimal data-effective learning method to optimize V-information in real-world medical domains.
arXiv Detail & Related papers (2024-08-13T10:28:54Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.
Existing approaches require re-training models on different data subsets, which is computationally intensive.
This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
arXiv Detail & Related papers (2024-06-16T17:09:24Z) - Prompt Public Large Language Models to Synthesize Data for Private On-device Applications [5.713077600587505]
This paper investigates how large language models (LLMs) trained on public data can improve the quality of pre-training data for the on-device language models trained with DP and FL.
The model pre-trained on our synthetic dataset achieves relative improvement of 19.0% and 22.8% in next word prediction accuracy.
Our experiments demonstrate the strengths of LLMs in synthesizing data close to the private distribution even without accessing the private data.
arXiv Detail & Related papers (2024-04-05T19:14:14Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - DsDm: Model-Aware Dataset Selection with Datamodels [81.01744199870043]
Standard practice is to filter for examples that match human notions of data quality.
We find that selecting according to similarity with "high quality" data sources may not increase (and can even hurt) performance compared to randomly selecting data.
Our framework avoids handpicked notions of data quality, and instead models explicitly how the learning process uses train datapoints to predict on the target tasks.
arXiv Detail & Related papers (2024-01-23T17:22:00Z) - Efficient Online Data Mixing For Language Model Pre-Training [101.45242332613944]
Existing data selection methods suffer from slow and computationally expensive processes.
Data mixing, on the other hand, reduces the complexity of data selection by grouping data points together.
We develop an efficient algorithm for Online Data Mixing (ODM) that combines elements from both data selection and data mixing.
arXiv Detail & Related papers (2023-12-05T00:42:35Z) - Measuring Causal Effects of Data Statistics on Language Model's
`Factual' Predictions [59.284907093349425]
Large amounts of training data are one of the major reasons for the high performance of state-of-the-art NLP models.
We provide a language for describing how training data influences predictions, through a causal framework.
Our framework bypasses the need to retrain expensive models and allows us to estimate causal effects based on observational data alone.
arXiv Detail & Related papers (2022-07-28T17:36:24Z) - Model-specific Data Subsampling with Influence Functions [37.64859614131316]
We develop a model-specific data subsampling strategy that improves over random sampling whenever training points have varying influence.
Specifically, we leverage influence functions to guide our selection strategy, proving theoretically, and demonstrating empirically that our approach quickly selects high-quality models.
arXiv Detail & Related papers (2020-10-20T12:10:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.