論文の概要: Sequential Binary Classification for Intrusion Detection in Software Defined Networks
- arxiv url: http://arxiv.org/abs/2406.06099v1
- Date: Mon, 10 Jun 2024 08:34:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 14:37:02.502391
- Title: Sequential Binary Classification for Intrusion Detection in Software Defined Networks
- Title(参考訳): ソフトウェア定義ネットワークにおける侵入検出のための逐次バイナリ分類
- Authors: Ishan Chokshi, Shrihari Vasudevan, Nachiappan Sundaram, Raaghul Ranganathan,
- Abstract要約: 侵入検知システム (IDS) は Software-Defined Networks (SDN) の重要な部分である
IDSデータセットは、標準機械学習(ML)モデルのパフォーマンスに影響を及ぼす、高いクラス不均衡に悩まされる。
この問題に対処する多クラス分類アルゴリズムとして,SBC(Sequential Binary Classification)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Software-Defined Networks (SDN) are the standard architecture for network deployment. Intrusion Detection Systems (IDS) are a pivotal part of this technology as networks become more vulnerable to new and sophisticated attacks. Machine Learning (ML)-based IDS are increasingly seen as the most effective approach to handle this issue. However, IDS datasets suffer from high class imbalance, which impacts the performance of standard ML models. We propose Sequential Binary Classification (SBC) - an algorithm for multi-class classification to address this issue. SBC is a hierarchical cascade of base classifiers, each of which can be modelled on any general binary classifier. Extensive experiments are reported on benchmark datasets that evaluate the performance of SBC under different scenarios.
- Abstract(参考訳): Software-Defined Networks (SDN) は、ネットワークデプロイメントの標準アーキテクチャである。
侵入検知システム(IDS)は、ネットワークが新たな高度な攻撃に対してより脆弱になるにつれて、この技術の重要な部分である。
機械学習(ML)ベースのIDSは、この問題に対処するための最も効果的なアプローチとして、ますます見られている。
しかし、IDSデータセットは高いクラス不均衡に悩まされ、標準MLモデルの性能に影響を及ぼす。
この問題に対処する多クラス分類アルゴリズムとして,SBC(Sequential Binary Classification)を提案する。
SBCは基底分類器の階層的なカスケードであり、それぞれが任意の一般バイナリ分類器でモデル化できる。
さまざまなシナリオ下でSBCのパフォーマンスを評価するベンチマークデータセットに、大規模な実験が報告されている。
関連論文リスト
- On the Cross-Dataset Generalization of Machine Learning for Network
Intrusion Detection [50.38534263407915]
ネットワーク侵入検知システム(NIDS)はサイバーセキュリティの基本的なツールである。
多様なネットワークにまたがる一般化能力は、その有効性と現実のアプリケーションにとって必須の要素である。
本研究では,機械学習に基づくNIDSの一般化に関する包括的分析を行う。
論文 参考訳(メタデータ) (2024-02-15T14:39:58Z) - DOC-NAD: A Hybrid Deep One-class Classifier for Network Anomaly
Detection [0.0]
ネットワーク侵入検知システム(NIDS)の検出能力を高めるために機械学習アプローチが用いられている。
最近の研究は、バイナリとマルチクラスのネットワーク異常検出タスクに従うことで、ほぼ完璧な性能を実現している。
本稿では,ネットワークデータサンプルの学習のみによるネットワーク侵入検出のためのDeep One-Class (DOC)分類器を提案する。
論文 参考訳(メタデータ) (2022-12-15T00:08:05Z) - When a RF Beats a CNN and GRU, Together -- A Comparison of Deep Learning
and Classical Machine Learning Approaches for Encrypted Malware Traffic
Classification [4.495583520377878]
悪意のあるトラフィック分類の場合、最先端のDLベースのソリューションは、古典的なMLベースのソリューションよりも必ずしも優れているとは限らないことを示す。
マルウェア検出、マルウェア家族分類、ゼロデイ攻撃の検出、反復的に増加するデータセットの分類など、さまざまなタスクに2つのよく知られたデータセットを使用することで、この発見を実証する。
論文 参考訳(メタデータ) (2022-06-16T08:59:53Z) - Ensemble Classifier Design Tuned to Dataset Characteristics for Network
Intrusion Detection [0.0]
データセットのクラスオーバーラップ問題に対処する2つの新しいアルゴリズムが提案されている。
提案手法は二進分類と多進分類の両方で評価される。
論文 参考訳(メタデータ) (2022-05-08T21:06:42Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
既存のクラスインクリメンタルラーニング(CIL)手法は、データラベルに敏感な教師付き分類フレームワークに基づいている。
新しいクラスデータに基づいて更新する場合、それらは破滅的な忘れがちである。
本稿では,SSCILにおける自己指導型表現学習のパフォーマンスを初めて考察する。
論文 参考訳(メタデータ) (2021-11-18T06:58:19Z) - An Adaptable Deep Learning-Based Intrusion Detection System to Zero-Day
Attacks [4.607145155913717]
侵入検知システム(IDS)は,コンピュータネットワークにおけるセキュリティ監視の必須要素である。
IDSの主な課題は、新しい(すなわちゼロデイの)攻撃に直面し、それらを良質なトラフィックと既存の攻撃から切り離すことである。
本稿では,新たな攻撃に対処する深層学習型IDSのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-20T14:41:28Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
実世界のフェデレーションシステムにおける分類モデルのトレーニングにおける中心的な課題は、非IIDデータによる学習である。
このアルゴリズムは, 近似されたssian混合モデルからサンプリングした仮想表現を用いて分類器を調整する。
実験の結果,CIFAR-10,CIFAR-100,CINIC-10など,一般的なフェデレーション学習ベンチマークにおけるCCVRの現状が示された。
論文 参考訳(メタデータ) (2021-06-09T12:02:29Z) - CREPO: An Open Repository to Benchmark Credal Network Algorithms [78.79752265884109]
クレダルネットワークは、確率質量関数の集合であるクレダルに基づく不正確な確率的グラフィカルモデルである。
CREMAと呼ばれるJavaライブラリが最近リリースされ、クレダルネットワークをモデル化し、処理し、クエリする。
我々は,これらのモデル上での推論タスクの正確な結果とともに,合成クレダルネットワークのオープンリポジトリであるcrrepoを提案する。
論文 参考訳(メタデータ) (2021-05-10T07:31:59Z) - An Explainable Machine Learning-based Network Intrusion Detection System
for Enabling Generalisability in Securing IoT Networks [0.0]
機械学習(ML)ベースのネットワーク侵入検知システムは、組織のセキュリティ姿勢を高める多くの利点をもたらす。
多くのシステムは研究コミュニティで設計・開発されており、特定のデータセットを用いて評価すると、しばしば完璧な検出率を達成する。
本稿では,異なるネットワーク環境と攻撃タイプに設定した共通機能の汎用性を評価することにより,ギャップを狭める。
論文 参考訳(メタデータ) (2021-04-15T00:44:45Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
我々は m 個の U 集合を $mge2$ で二進分類する新しい手法を提案する。
我々のキーとなる考え方は、サロゲート集合分類(SSC)と呼ばれる補助的分類タスクを考えることである。
論文 参考訳(メタデータ) (2021-02-01T07:36:38Z) - Searching Central Difference Convolutional Networks for Face
Anti-Spoofing [68.77468465774267]
顔認識システムにおいて、顔の反偽造(FAS)が重要な役割を担っている。
最先端のFASメソッドの多くは、スタック化された畳み込みと専門家が設計したネットワークに依存している。
ここでは、中央差分畳み込み(CDC)に基づくフレームレベルの新しいFAS手法を提案する。
論文 参考訳(メタデータ) (2020-03-09T12:48:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。