Adaptive Control in Assistive Application -- A Study Evaluating Shared Control by Users with Limited Upper Limb Mobility
- URL: http://arxiv.org/abs/2406.06103v1
- Date: Mon, 10 Jun 2024 08:36:55 GMT
- Title: Adaptive Control in Assistive Application -- A Study Evaluating Shared Control by Users with Limited Upper Limb Mobility
- Authors: Felix Ferdinand Goldau, Max Pascher, Annalies Baumeister, Patrizia Tolle, Jens Gerken, Udo Frese,
- Abstract summary: This study assesses an adaptive Degrees of Freedom control method specifically tailored for individuals with upper limb impairments.
It employs a between-subjects analysis with 24 participants, conducting 81 trials across three distinct input devices in a realistic everyday-task setting.
- Score: 4.858212893290674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Shared control in assistive robotics blends human autonomy with computer assistance, thus simplifying complex tasks for individuals with physical impairments. This study assesses an adaptive Degrees of Freedom control method specifically tailored for individuals with upper limb impairments. It employs a between-subjects analysis with 24 participants, conducting 81 trials across three distinct input devices in a realistic everyday-task setting. Given the diverse capabilities of the vulnerable target demographic and the known challenges in statistical comparisons due to individual differences, the study focuses primarily on subjective qualitative data. The results reveal consistently high success rates in trial completions, irrespective of the input device used. Participants appreciated their involvement in the research process, displayed a positive outlook, and quick adaptability to the control system. Notably, each participant effectively managed the given task within a short time frame.
Related papers
- Analyzing Operator States and the Impact of AI-Enhanced Decision Support
in Control Rooms: A Human-in-the-Loop Specialized Reinforcement Learning
Framework for Intervention Strategies [0.9378955659006951]
In complex industrial and chemical process control rooms, effective decision-making is crucial for safety andeffi- ciency.
The experiments in this paper evaluate the impact and applications of an AI-based decision support system integrated into an improved human-machine interface.
arXiv Detail & Related papers (2024-02-20T18:31:27Z) - Offline Risk-sensitive RL with Partial Observability to Enhance
Performance in Human-Robot Teaming [1.3980986259786223]
We propose a method to incorporate model uncertainty, thus enabling risk-sensitive sequential decision-making.
Experiments were conducted with a group of twenty-six human participants within a simulated robot teleoperation environment.
arXiv Detail & Related papers (2024-02-08T14:27:34Z) - Exploring of Discrete and Continuous Input Control for AI-enhanced
Assistive Robotic Arms [5.371337604556312]
Collaborative robots require users to manage multiple Degrees-of-Freedom (DoFs) for tasks like grasping and manipulating objects.
This study explores three different input devices by integrating them into an established XR framework for assistive robotics.
arXiv Detail & Related papers (2024-01-13T16:57:40Z) - Optimising Human-AI Collaboration by Learning Convincing Explanations [62.81395661556852]
We propose a method for a collaborative system that remains safe by having a human making decisions.
Ardent enables efficient and effective decision-making by adapting to individual preferences for explanations.
arXiv Detail & Related papers (2023-11-13T16:00:16Z) - A Matter of Annotation: An Empirical Study on In Situ and Self-Recall Activity Annotations from Wearable Sensors [56.554277096170246]
We present an empirical study that evaluates and contrasts four commonly employed annotation methods in user studies focused on in-the-wild data collection.
For both the user-driven, in situ annotations, where participants annotate their activities during the actual recording process, and the recall methods, where participants retrospectively annotate their data at the end of each day, the participants had the flexibility to select their own set of activity classes and corresponding labels.
arXiv Detail & Related papers (2023-05-15T16:02:56Z) - Conveying Autonomous Robot Capabilities through Contrasting Behaviour
Summaries [8.413049356622201]
We present an adaptive search method for efficiently generating contrasting behaviour summaries.
Our results indicate that adaptive search can efficiently identify informative contrasting scenarios that enable humans to accurately select the better performing agent.
arXiv Detail & Related papers (2023-04-01T18:20:59Z) - Empirical Estimates on Hand Manipulation are Recoverable: A Step Towards
Individualized and Explainable Robotic Support in Everyday Activities [80.37857025201036]
Key challenge for robotic systems is to figure out the behavior of another agent.
Processing correct inferences is especially challenging when (confounding) factors are not controlled experimentally.
We propose equipping robots with the necessary tools to conduct observational studies on people.
arXiv Detail & Related papers (2022-01-27T22:15:56Z) - Personalized Rehabilitation Robotics based on Online Learning Control [62.6606062732021]
We propose a novel online learning control architecture, which is able to personalize the control force at run time to each individual user.
We evaluate our method in an experimental user study, where the learning controller is shown to provide personalized control, while also obtaining safe interaction forces.
arXiv Detail & Related papers (2021-10-01T15:28:44Z) - Weakly-supervised Multi-task Learning for Multimodal Affect Recognition [33.7929682119287]
We propose to leverage datasets using weakly-supervised multi-task learning to improve generalization performance.
Specifically, we explore three multimodal affect recognition tasks: 1) emotion recognition; 2) sentiment analysis; and 3) sarcasm recognition.
Our experimental results show that multi-tasking can benefit all these tasks, achieving an improvement up to 2.9% accuracy and 3.3% F1-score.
arXiv Detail & Related papers (2021-04-23T12:36:19Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
We build an imitation learning system that can continuously improve through autonomous data collection.
We leverage the robot's own trials as demonstrations for tasks other than the one that the robot actually attempted.
In contrast to prior imitation learning approaches, our method can autonomously collect data with sparse supervision for continuous improvement.
arXiv Detail & Related papers (2020-02-25T18:56:42Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.