論文の概要: Decoupled Marked Temporal Point Process using Neural Ordinary Differential Equations
- arxiv url: http://arxiv.org/abs/2406.06149v1
- Date: Mon, 10 Jun 2024 10:15:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 14:27:16.884252
- Title: Decoupled Marked Temporal Point Process using Neural Ordinary Differential Equations
- Title(参考訳): ニューラル正規微分方程式を用いたデカップリングマーク付き時間点過程
- Authors: Yujee Song, Donghyun Lee, Rui Meng, Won Hwa Kim,
- Abstract要約: MTPP(マークド・テンポラル・ポイント・プロセス)は、イベント・タイム・データの集合である。
近年の研究では、ディープニューラルネットワークを使用してイベントの複雑な時間的依存関係をキャプチャしている。
本稿では,プロセスの特性を異なる事象からの進化的影響の集合に分解する脱結合型MTPPフレームワークを提案する。
- 参考スコア(独自算出の注目度): 14.828081841581296
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A Marked Temporal Point Process (MTPP) is a stochastic process whose realization is a set of event-time data. MTPP is often used to understand complex dynamics of asynchronous temporal events such as money transaction, social media, healthcare, etc. Recent studies have utilized deep neural networks to capture complex temporal dependencies of events and generate embedding that aptly represent the observed events. While most previous studies focus on the inter-event dependencies and their representations, how individual events influence the overall dynamics over time has been under-explored. In this regime, we propose a Decoupled MTPP framework that disentangles characterization of a stochastic process into a set of evolving influences from different events. Our approach employs Neural Ordinary Differential Equations (Neural ODEs) to learn flexible continuous dynamics of these influences while simultaneously addressing multiple inference problems, such as density estimation and survival rate computation. We emphasize the significance of disentangling the influences by comparing our framework with state-of-the-art methods on real-life datasets, and provide analysis on the model behavior for potential applications.
- Abstract(参考訳): MTPP (Marked Temporal Point Process) は、事象時データの集合である確率過程である。
MTPPは、金銭取引、ソーシャルメディア、医療などのような非同期の時間イベントの複雑なダイナミクスを理解するためによく使われます。
近年の研究では、ディープニューラルネットワークを使用して、イベントの複雑な時間的依存関係をキャプチャし、観測されたイベントを適切に表現する埋め込みを生成する。
これまでのほとんどの研究では、イベント間の依存関係とその表現に焦点が当てられていたが、個々のイベントが時間の経過とともに全体的なダイナミクスにどのように影響するかは調査されていない。
本稿では,確率過程の特性を異なる事象からの進化的影響の集合に分解する脱結合型MTPPフレームワークを提案する。
提案手法はニューラル正規微分方程式(Neural Ordinary Differential Equations,Neural ODEs)を用いて,これらの影響のフレキシブルな連続力学を学習し,密度推定や生存率計算といった複数の推論問題に同時に対処する。
我々は,本フレームワークを実生活データセット上での最先端の手法と比較することにより,影響を解消することの重要性を強調し,潜在的なアプリケーションに対するモデル行動の分析を行う。
関連論文リスト
- On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
時間的因果表現学習は時系列観測から潜在因果過程を特定することを目的としている。
ほとんどの方法は、潜在因果過程が即時関係を持たないという仮定を必要とする。
我々は,インスタントtextbfOus textbfLatent dynamics のための textbfIDentification フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-24T08:08:05Z) - Cumulative Distribution Function based General Temporal Point Processes [49.758080415846884]
CuFunモデルは、累積分布関数(CDF)を中心に回転するTPPに対する新しいアプローチを表す
提案手法は従来のTPPモデリングに固有のいくつかの重要な問題に対処する。
コントリビューションには、先駆的なCDFベースのTPPモデルの導入、過去の事象情報を将来の事象予測に組み込む方法論の開発が含まれている。
論文 参考訳(メタデータ) (2024-02-01T07:21:30Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Enhancing Asynchronous Time Series Forecasting with Contrastive
Relational Inference [21.51753838306655]
時間点プロセス(TPP)は、そのようなモデリングの標準的な方法である。
既存のTPPモデルは、イベントの相互作用を明示的にモデル化する代わりに、将来のイベントの条件分布に焦点を当てており、イベント予測の課題を示唆している。
本稿では,ニューラル推論(NRI)を利用して,観測データから動的パターンを同時に学習しながら,相互作用を推論するグラフを学習する手法を提案する。
論文 参考訳(メタデータ) (2023-09-06T09:47:03Z) - Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
HMP(Human Motion Prediction)はその多種多様な応用により、人気のある研究トピックとして浮上している。
従来の手法は手作りの機能と機械学習技術に依存している。
HMPのためのインクリメンタル情報を用いた時空間分岐ネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-02T12:04:28Z) - Inferring dynamic regulatory interaction graphs from time series data
with perturbations [14.935318448625718]
本稿では,複雑なシステムにおける時間変化の相互作用グラフを推定するためのRegulatory Temporal Interaction Network Inference (RiTINI)を提案する。
RiTINIは空間・時間グラフアテンションとグラフニューラル常微分方程式(ODE)を組み合わせた新しい組み合わせを用いる
我々は,様々なシミュレーションおよび実世界のデータセット上でのRiTINIの性能を評価する。
論文 参考訳(メタデータ) (2023-06-13T14:25:26Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
反現実的な結果を予測することは、パーソナライズされたヘルスケアをアンロックする可能性がある。
既存の因果推論アプローチでは、観察と治療決定の間の通常の離散時間間隔が考慮されている。
そこで本研究では,腫瘍増殖モデルに基づく制御可能なシミュレーション環境を提案する。
論文 参考訳(メタデータ) (2022-06-16T17:15:15Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Variational Neural Temporal Point Process [22.396329275957996]
時間的ポイントプロセスは、どのイベントが発生するか、いつ発生するかを予測するプロセスである。
推論と生成ネットワークを導入し、潜伏変数の分布をトレーニングし、ディープニューラルネットワーク上の特性に対処する。
我々は,これらのモデルが様々なイベントの表現を一般化できることを実証的に実証した。
論文 参考訳(メタデータ) (2022-02-17T13:34:30Z) - Pay Attention to Evolution: Time Series Forecasting with Deep
Graph-Evolution Learning [33.79957892029931]
本研究は時系列予測のためのニューラルネットワークアーキテクチャを提案する。
Recurrent Graph Evolution Neural Network (ReGENN) と名付けた。
多数のアンサンブル法と古典統計法との比較を行った。
論文 参考訳(メタデータ) (2020-08-28T20:10:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。