論文の概要: Community-Aware Temporal Walks: Parameter-Free Representation Learning on Continuous-Time Dynamic Graphs
- arxiv url: http://arxiv.org/abs/2501.11880v1
- Date: Tue, 21 Jan 2025 04:16:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:24:42.991939
- Title: Community-Aware Temporal Walks: Parameter-Free Representation Learning on Continuous-Time Dynamic Graphs
- Title(参考訳): コミュニティ対応時間歩行:連続時間動的グラフを用いたパラメータフリー表現学習
- Authors: He Yu, Jing Liu,
- Abstract要約: Community-Aware Temporal Walks (CTWalks)は、連続時間動的グラフ上での表現学習のための新しいフレームワークである。
CTWalksは、コミュニティベースのパラメータフリー時間ウォークサンプリング機構、コミュニティラベルに富んだ匿名化戦略、エンコーディングプロセスを統合する。
ベンチマークデータセットの実験では、CTWalksは時間リンク予測タスクにおいて確立された手法よりも優れていた。
- 参考スコア(独自算出の注目度): 3.833708891059351
- License:
- Abstract: Dynamic graph representation learning plays a crucial role in understanding evolving behaviors. However, existing methods often struggle with flexibility, adaptability, and the preservation of temporal and structural dynamics. To address these issues, we propose Community-aware Temporal Walks (CTWalks), a novel framework for representation learning on continuous-time dynamic graphs. CTWalks integrates three key components: a community-based parameter-free temporal walk sampling mechanism, an anonymization strategy enriched with community labels, and an encoding process that leverages continuous temporal dynamics modeled via ordinary differential equations (ODEs). This design enables precise modeling of both intra- and inter-community interactions, offering a fine-grained representation of evolving temporal patterns in continuous-time dynamic graphs. CTWalks theoretically overcomes locality bias in walks and establishes its connection to matrix factorization. Experiments on benchmark datasets demonstrate that CTWalks outperforms established methods in temporal link prediction tasks, achieving higher accuracy while maintaining robustness.
- Abstract(参考訳): 動的グラフ表現学習は、進化する行動を理解する上で重要な役割を果たす。
しかし、既存の手法は、しばしば柔軟性、適応性、時間的・構造的ダイナミクスの保存に苦しむ。
このような問題に対処するために,我々は,連続時間動的グラフ上での表現学習のための新しいフレームワークであるコミュニティ対応時間歩行(CTWalks)を提案する。
CTWalksは、コミュニティベースのパラメータフリー時間的ウォークサンプリング機構、コミュニティラベルに富んだ匿名化戦略、常微分方程式(ODE)をモデルとした連続時間的ダイナミクスを活用する符号化プロセスの3つの重要なコンポーネントを統合している。
この設計は、コミュニティ内相互作用とコミュニティ間相互作用の両方の正確なモデリングを可能にし、連続時間動的グラフにおける時間的パターンの詳細な表現を提供する。
CTWalksは、歩行における局所性バイアスを理論的に克服し、行列分解との関係を確立する。
ベンチマークデータセットの実験では、CTWalksは時間リンク予測タスクにおいて確立された手法よりも優れており、堅牢性を維持しつつ高い精度を実現している。
関連論文リスト
- Decoupled Marked Temporal Point Process using Neural Ordinary Differential Equations [14.828081841581296]
MTPP(マークド・テンポラル・ポイント・プロセス)は、イベント・タイム・データの集合である。
近年の研究では、ディープニューラルネットワークを使用してイベントの複雑な時間的依存関係をキャプチャしている。
本稿では,プロセスの特性を異なる事象からの進化的影響の集合に分解する脱結合型MTPPフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-10T10:15:32Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Continuous-time Graph Representation with Sequential Survival Process [0.17265013728931003]
本稿では,リンクの継続時間と不在期間をモデル化するために,生存関数に依存するプロセスを提案する。
GraSSP: Graph Representation with Sequential Survival Processは、断続的なエッジパーシスタントネットワークを明示的に考慮した、汎用的な新しいモデルを形成する。
我々は、リンク予測やネットワーク補完など、様々な下流タスクにおいて開発されたフレームワークを定量的に評価する。
論文 参考訳(メタデータ) (2023-12-20T14:46:54Z) - Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
HMP(Human Motion Prediction)はその多種多様な応用により、人気のある研究トピックとして浮上している。
従来の手法は手作りの機能と機械学習技術に依存している。
HMPのためのインクリメンタル情報を用いた時空間分岐ネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-02T12:04:28Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
本稿では,3つのモジュールから構成される使い勝手の良いパイプライン(EasyDGL)を設計することを目的とする。
EasyDGLは、進化するグラフデータからモデルが学習する周波数コンテンツの予測力を効果的に定量化することができる。
論文 参考訳(メタデータ) (2023-03-22T06:35:08Z) - Piecewise-Velocity Model for Learning Continuous-time Dynamic Node
Representations [0.0]
連続時間動的ネットワーク表現のためのPiecewise-Veable Model (PiVeM)。
超低次元空間において、PiVeMはネットワーク構造と力学をうまく表現できることを示す。
リンク予測などの下流タスクでは、関連する最先端メソッドよりも優れています。
論文 参考訳(メタデータ) (2022-12-23T13:57:56Z) - DyTed: Disentangled Representation Learning for Discrete-time Dynamic
Graph [59.583555454424]
離散時間動的グラフ、すなわちDyTedのための新しいディペンタングル表現学習フレームワークを提案する。
本研究では,時間不変の表現と時間変動の表現を効果的に識別する構造的コントラスト学習とともに,時間的クリップのコントラスト学習タスクを特別に設計する。
論文 参考訳(メタデータ) (2022-10-19T14:34:12Z) - ConTIG: Continuous Representation Learning on Temporal Interaction
Graphs [32.25218861788686]
ConTIGは、ノード埋め込み軌道の連続的動的進化をキャプチャする連続表現法である。
我々のモデルは、最新の相互作用、隣り合う特徴、固有の特徴を含む、動的ネットワークにおける3つの要素を生かしている。
実験結果は、時間的リンク予測、時間的ノードレコメンデーション、動的ノード分類タスクにおけるConTIGの優位性を示す。
論文 参考訳(メタデータ) (2021-09-27T12:11:24Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - GRADE: Graph Dynamic Embedding [76.85156209917932]
GRADEは、軌道に先立ってランダムウォークを課すことで、進化するノードとコミュニティ表現を生成することを学ぶ確率モデルである。
我々のモデルは、遷移行列を介して時間ステップ間で更新されるノードコミュニティメンバシップも学習する。
実験では、GRADEは動的リンク予測においてベースラインを上回る性能を示し、動的コミュニティ検出において好適な性能を示し、一貫性と解釈可能な進化するコミュニティを特定する。
論文 参考訳(メタデータ) (2020-07-16T01:17:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。