Long-Range Quantum Tunneling via Matter Wave
- URL: http://arxiv.org/abs/2406.06162v1
- Date: Mon, 10 Jun 2024 10:53:18 GMT
- Title: Long-Range Quantum Tunneling via Matter Wave
- Authors: Yuan-Xing Yang, Si-Yuan Bai, Jun-Hong An,
- Abstract summary: We study the tunneling of an ultracold atom among $N$ far-separated trapping potentials in a state-selective optical lattice.
It is found that, by the mediation role of the propagating matter wave emitted from the excited-state atom, a coherent tunneling of the tightly confined atom to the remote trapping potentials can occur.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum tunneling refers to a phenomenon that a microscopic object can pass through a potential barrier even it does not have enough energy to overcome the barrier. It has led to many modern applications and nanotechnologies. A general belief is that quantum tunneling, as a manifestation of the wave-particle duality, occurs only when the width of the barrier is comparable to or smaller than the de Broglie's wavelength of the object. Here, via studying the tunneling of an ultracold atom among $N$ far-separated trapping potentials in a state-selective optical lattice, we discover a mechanism to realize a long-range quantum tunneling. It is found that, by the mediation role of the propagating matter wave emitted from the excited-state atom, a coherent tunneling of the tightly confined atom to the remote trapping potentials can occur as long as bound states are present in the energy spectrum of the total system formed by the atom and its matter wave. Breaking through the generally believed distance constraint of quantum tunneling, our result opens another avenue to realize quantum tunneling and gives a guideline to develop tunneling devices.
Related papers
- Ultra-cold atoms quantum tunneling through single and double optical barriers [0.0]
We realize textbook experiments on Bose-Einstein condensate tunnelling through thin repulsive potential barriers.
In particular, we demonstrate atom tunnelling though a single optical barrier in the quantum scattering regime.
We study the case of two barriers creating an atomic Fabry-P'erot cavity.
arXiv Detail & Related papers (2024-05-23T11:54:11Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Interaction between giant atoms in a one-dimensional structured
environment [0.0]
We study the interaction between two giant atoms mediated by a structured waveguide.
We show decoherence-free interaction is possible for different atom-cavity detunings.
Results may find applications in quantum simulation and quantum gate implementation.
arXiv Detail & Related papers (2022-08-08T12:47:09Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Quantum Zeno Manipulation of Quantum Dots [0.0]
We investigate whether and how the quantum Zeno effect, i.e., the inhibition of quantum evolution by frequent measurements, can be employed to isolate a quantum dot from its surrounding electron reservoir.
arXiv Detail & Related papers (2022-01-27T18:21:54Z) - Chiral quantum optics with giant atoms [0.0]
In quantum optics, it is common to assume that atoms are point-like objects compared to the wavelength of the electromagnetic field they interact with.
Previous work has shown that superconducting qubits coupled to a one-dimensional waveguide can behave as such "giant atoms" and then interact through the waveguide without decohering.
Here, we show that this decoherence-free interaction is also possible when the coupling to the waveguide is chiral, i.e., when the coupling depends on the propagation direction of the light.
arXiv Detail & Related papers (2021-06-22T17:39:30Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.