論文の概要: Data Augmentation in Earth Observation: A Diffusion Model Approach
- arxiv url: http://arxiv.org/abs/2406.06218v1
- Date: Mon, 10 Jun 2024 12:33:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 14:07:44.214756
- Title: Data Augmentation in Earth Observation: A Diffusion Model Approach
- Title(参考訳): 地球観測におけるデータ拡張:拡散モデルによるアプローチ
- Authors: Tiago Sousa, Benoît Ries, Nicolas Guelfi,
- Abstract要約: 高品質な地球観測(EO)画像の不足は重要な課題である。
AIで広く使われているデータ拡張は、データの量と多様性を高めるために採用されている。
本研究では,拡散モデルの統合による拡張データの多様性向上を目的とした,新しい4段階のアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The scarcity of high-quality Earth Observation (EO) imagery poses a significant challenge, despite its critical role in enabling precise analysis and informed decision-making across various sectors. This scarcity is primarily due to atmospheric conditions, seasonal variations, and limited geographical coverage, which complicates the application of Artificial Intelligence (AI) in EO. Data augmentation, a widely used technique in AI that involves generating additional data mainly through parameterized image transformations, has been employed to increase the volume and diversity of data. However, this method often falls short in generating sufficient diversity across key semantic axes, adversely affecting the accuracy of EO applications. To address this issue, we propose a novel four-stage approach aimed at improving the diversity of augmented data by integrating diffusion models. Our approach employs meta-prompts for instruction generation, harnesses general-purpose vision-language models for generating rich captions, fine-tunes an Earth Observation diffusion model, and iteratively augments data. We conducted extensive experiments using four different data augmentation techniques, and our approach consistently demonstrated improvements, outperforming the established augmentation methods, revealing its effectiveness in generating semantically rich and diverse EO images.
- Abstract(参考訳): 高品質な地球観測(EO)画像の不足は、様々な分野において正確な分析と情報決定を可能にする上で重要な役割を担っているにもかかわらず、大きな課題となっている。
この不足は主に、大気条件、季節変動、地理的範囲の制限によるものであり、EOにおける人工知能(AI)の適用を複雑にしている。
データ拡張(Data Augmentation)は、パラメータ化された画像変換を中心に追加データを生成するAIで広く使用されているテクニックで、データのボリュームと多様性を高めるために使用されている。
しかし、この方法はキーセマンティック軸間の十分な多様性が得られず、EOアプリケーションの精度に悪影響を及ぼすことが多い。
そこで本研究では,拡散モデルの統合による拡張データの多様性向上を目的とした,新しい4段階のアプローチを提案する。
提案手法では,メタプロンプトを用いた命令生成,リッチキャプション生成のための汎用視覚言語モデル,地球観測拡散モデルによる微調整,反復的なデータ拡張を行う。
提案手法は,4つの異なるデータ拡張手法を用いて広範囲にわたる実験を行い,改良を一貫して実証し,確立された拡張手法より優れ,意味的にリッチで多様なEO画像を生成する上での有効性を明らかにした。
関連論文リスト
- Erase, then Redraw: A Novel Data Augmentation Approach for Free Space Detection Using Diffusion Model [5.57325257338134]
従来のデータ拡張方法は、ハイレベルなセマンティック属性を変更することはできない。
画像から画像への変換をパラメータ化するためのテキスト間拡散モデルを提案する。
我々は、元のデータセットから実際のオブジェクトのインスタンスを消去し、削除されたリージョンで同様の意味を持つ新しいインスタンスを生成することで、この目標を達成する。
論文 参考訳(メタデータ) (2024-09-30T10:21:54Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
コンピュータビジョンでは、データの多様性の欠如がモデル性能を損なうことはよく知られている。
本稿では, 生成モデルの進歩を生かして, 単純かつ効果的なデータ拡張手法を提案する。
背景強化は、特にモデルの堅牢性と一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2024-08-01T07:40:00Z) - Quanv4EO: Empowering Earth Observation by means of Quanvolutional Neural Networks [62.12107686529827]
本稿は、大量のリモートセンシングデータの処理において、量子コンピューティング技術を活用することへの大きなシフトを取り上げる。
提案したQuanv4EOモデルでは,多次元EOデータを前処理するための準進化法が導入された。
主要な知見は,提案モデルが画像分類の精度を維持するだけでなく,EOのユースケースの約5%の精度向上を図っていることを示唆している。
論文 参考訳(メタデータ) (2024-07-24T09:11:34Z) - Diff-Mosaic: Augmenting Realistic Representations in Infrared Small Target Detection via Diffusion Prior [63.64088590653005]
本稿では拡散モデルに基づくデータ拡張手法であるDiff-Mosaicを提案する。
我々は,モザイク画像を高度に調整し,リアルな画像を生成するPixel-Priorという拡張ネットワークを導入する。
第2段階では,Diff-Prior という画像強調戦略を提案する。
論文 参考訳(メタデータ) (2024-06-02T06:23:05Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
実世界のアプリケーションでは,音声およびビデオデータに基づくマルチモーダル感情認識が重要である。
近年の手法は、強力なマルチモーダルエンコーダの事前学習に自己教師付き学習(SSL)の進歩を活用することに重点を置いている。
SSL-pre-trained disimodal encoders を用いて,この問題に対する異なる視点とマルチモーダル DFER の性能向上について検討する。
論文 参考訳(メタデータ) (2024-04-13T13:39:26Z) - Diffusion Deepfake [41.59597965760673]
生成AIの最近の進歩は、主に拡散モデルを通じて、現実世界のディープフェイク検出において大きな課題を呈している。
画像の詳細、多様なコンテンツ、そして一般大衆への幅広いアクセス性におけるリアリズムの増加は、これらの洗練されたディープフェイクの識別を複雑にしている。
本稿では,最先端拡散モデルにより生成された2つの広範囲なディープフェイクデータセットを紹介する。
論文 参考訳(メタデータ) (2024-04-02T02:17:50Z) - Boosting Human-Object Interaction Detection with Text-to-Image Diffusion
Model [22.31860516617302]
本稿では,事前学習したテキスト画像拡散モデルに基づく新しいHOI検出方式であるDiffHOIを紹介する。
HOIデータセットのギャップを埋めるために、クラスバランス、大規模、高多様性の合成データセットであるSynHOIを提案する。
実験により、DiffHOIは通常の検出(41.50 mAP)とゼロショット検出において、最先端の技術を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2023-05-20T17:59:23Z) - Local Magnification for Data and Feature Augmentation [53.04028225837681]
LOMA(Local Magnification)と呼ばれる,実装が容易かつモデルフリーなデータ拡張手法を提案する。
LOMAは、画像の局所領域をランダムに拡大することにより、追加のトレーニングデータを生成する。
実験の結果,提案するLOMAと標準データ拡張を組み合わせることで,画像分類や物体検出の性能を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-11-15T02:51:59Z) - CoDA: Contrast-enhanced and Diversity-promoting Data Augmentation for
Natural Language Understanding [67.61357003974153]
我々はCoDAと呼ばれる新しいデータ拡張フレームワークを提案する。
CoDAは、複数の変換を有機的に統合することで、多種多様な情報付加例を合成する。
すべてのデータサンプルのグローバルな関係を捉えるために、対照的な正則化の目的を導入する。
論文 参考訳(メタデータ) (2020-10-16T23:57:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。