論文の概要: Quanv4EO: Empowering Earth Observation by means of Quanvolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2407.17108v1
- Date: Wed, 24 Jul 2024 09:11:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 14:23:43.949960
- Title: Quanv4EO: Empowering Earth Observation by means of Quanvolutional Neural Networks
- Title(参考訳): Quanv4EO: 準進化型ニューラルネットワークによる地球観測の強化
- Authors: Alessandro Sebastianelli, Francesco Mauro, Giulia Ciabatti, Dario Spiller, Bertrand Le Saux, Paolo Gamba, Silvia Ullo,
- Abstract要約: 本稿は、大量のリモートセンシングデータの処理において、量子コンピューティング技術を活用することへの大きなシフトを取り上げる。
提案したQuanv4EOモデルでは,多次元EOデータを前処理するための準進化法が導入された。
主要な知見は,提案モデルが画像分類の精度を維持するだけでなく,EOのユースケースの約5%の精度向上を図っていることを示唆している。
- 参考スコア(独自算出の注目度): 62.12107686529827
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A significant amount of remotely sensed data is generated daily by many Earth observation (EO) spaceborne and airborne sensors over different countries of our planet. Different applications use those data, such as natural hazard monitoring, global climate change, urban planning, and more. Many challenges are brought by the use of these big data in the context of remote sensing applications. In recent years, employment of machine learning (ML) and deep learning (DL)-based algorithms have allowed a more efficient use of these data but the issues in managing, processing, and efficiently exploiting them have even increased since classical computers have reached their limits. This article highlights a significant shift towards leveraging quantum computing techniques in processing large volumes of remote sensing data. The proposed Quanv4EO model introduces a quanvolution method for preprocessing multi-dimensional EO data. First its effectiveness is demonstrated through image classification tasks on MNIST and Fashion MNIST datasets, and later on, its capabilities on remote sensing image classification and filtering are shown. Key findings suggest that the proposed model not only maintains high precision in image classification but also shows improvements of around 5\% in EO use cases compared to classical approaches. Moreover, the proposed framework stands out for its reduced parameter size and the absence of training quantum kernels, enabling better scalability for processing massive datasets. These advancements underscore the promising potential of quantum computing in addressing the limitations of classical algorithms in remote sensing applications, offering a more efficient and effective alternative for image data classification and analysis.
- Abstract(参考訳): リモートセンシングされた膨大な量のデータは、地球観測(EO)によって毎日発生し、地球上の様々な国で観測される。
自然災害モニタリング、地球規模の気候変動、都市計画など、さまざまなアプリケーションがこれらのデータを利用している。
リモートセンシングアプリケーションのコンテキストにおいて、これらのビッグデータを使用することによって、多くの課題がもたらされる。
近年、機械学習(ML)とディープラーニング(DL)ベースのアルゴリズムは、これらのデータのより効率的な利用を可能にしている。
本稿は、大量のリモートセンシングデータの処理において、量子コンピューティング技術を活用することへの大きなシフトを取り上げる。
提案したQuanv4EOモデルでは,多次元EOデータを前処理するための準進化法が導入された。
まず、MNISTおよびFashion MNISTデータセットの画像分類タスクにより、その効果を実証し、その後、リモートセンシング画像分類とフィルタリングの能力を示す。
主な知見は,提案モデルが画像分類の精度を維持するだけでなく,従来の手法と比較して,EOのユースケースの約5倍の精度向上を図っていることを示唆している。
さらに、提案するフレームワークは、パラメータサイズの削減と量子カーネルのトレーニングの欠如により、大量のデータセットを処理するためのスケーラビリティの向上を実現している。
これらの進歩は、リモートセンシングアプリケーションにおける古典的アルゴリズムの限界に対処する量子コンピューティングの有望な可能性を強調し、画像データ分類と解析のより効率的で効果的な代替手段を提供する。
関連論文リスト
- Scale-Translation Equivariant Network for Oceanic Internal Solitary Wave Localization [7.444865250744234]
内部孤立波(英:internal Solitary wave、ISW)は、内部の海洋でしばしば観測される重力波である。
光リモートセンシング画像における雲のカバーは、地表面の情報を可変的に曖昧にし、ぼやけたり、表面の観察を欠いたりする。
本稿では,ISWを自動検出するアルゴリズムを用いた機械学習ソリューションを提案する。
論文 参考訳(メタデータ) (2024-06-18T21:09:56Z) - Sense Less, Generate More: Pre-training LiDAR Perception with Masked Autoencoders for Ultra-Efficient 3D Sensing [0.6340101348986665]
本稿では,環境の広範囲なトレーニングに基づいて予測可能か,あるいは全体的な予測精度に限界がある環境の一部ではなく,環境の一部を生成する,破壊的かつフラグアルなLiDAR知覚データフローを提案する。
この目的のために提案した生成前訓練戦略であるR-MAE(Radially masked autoencoding)は、オンフィールド操作中にランダムに生成された角状領域のレーザパワーを選択的に活性化制御することにより、典型的なLiDARシステムでも容易に実装できる。
論文 参考訳(メタデータ) (2024-06-12T03:02:54Z) - Efficient Prompt Tuning of Large Vision-Language Model for Fine-Grained
Ship Classification [62.425462136772666]
リモートセンシング(RS-FGSC)における船のきめ細かい分類は、クラス間の高い類似性とラベル付きデータの限られた可用性のために大きな課題となる。
大規模な訓練済みビジョンランゲージモデル(VLM)の最近の進歩は、少数ショット学習やゼロショット学習において印象的な能力を示している。
本研究は, 船種別分類精度を高めるために, VLMの可能性を生かしたものである。
論文 参考訳(メタデータ) (2024-03-13T05:48:58Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
教師なし学習の最近の進歩は、下流タスクにおける有望な結果を達成するための大きな視覚モデルの可能性を示している。
このような事前学習技術は、大量の未学習データが利用可能であることから、リモートセンシング領域でも最近研究されている。
本稿では,マルチモーダルで効果的に活用されるマルチスケール情報の事前学習と活用について述べる。
論文 参考訳(メタデータ) (2024-03-08T16:18:04Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - SPADES: A Realistic Spacecraft Pose Estimation Dataset using Event
Sensing [9.583223655096077]
実際のターゲットデータセットへのアクセスが限られているため、アルゴリズムはしばしば合成データを使用して訓練され、実際のドメインに適用される。
イベントセンシングは過去にも行われており、シミュレーションと実世界のシナリオの間のドメインギャップを減らすことが示されている。
制御された実験室で取得した実イベントデータと、同じカメラ内在性を用いてイベントデータをシミュレートした新しいデータセットSPADESを提案する。
論文 参考訳(メタデータ) (2023-11-09T12:14:47Z) - Evaluating the Label Efficiency of Contrastive Self-Supervised Learning
for Multi-Resolution Satellite Imagery [0.0]
遠隔センシング領域における自己教師付き学習は、容易に利用可能なラベル付きデータを活用するために応用されている。
本稿では,ラベル効率のレンズを用いた自己教師型視覚表現学習について検討する。
論文 参考訳(メタデータ) (2022-10-13T06:54:13Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
本稿では,公開されているリモートセンシングデータからなるマルチモーダル・大規模時間データセットを作成するためのアプローチを提案する。
我々は、異なる種類の植生を分離できる畳み込みニューラルネットワーク(CNN)モデルを使用する。
論文 参考訳(メタデータ) (2022-09-28T18:51:59Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
機械学習(ML)と人工知能(AI)はITシステムの運用とメンテナンスに適用される。
1つの方向は、修復自動化を可能にするために、繰り返し発生する異常タイプを認識することである。
与えられたデータの次元変化に不変な手法を提案する。
論文 参考訳(メタデータ) (2021-02-25T14:24:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。