論文の概要: Data Augmentation in Earth Observation: A Diffusion Model Approach
- arxiv url: http://arxiv.org/abs/2406.06218v2
- Date: Wed, 26 Mar 2025 16:23:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 19:18:46.904338
- Title: Data Augmentation in Earth Observation: A Diffusion Model Approach
- Title(参考訳): 地球観測におけるデータ拡張:拡散モデルによるアプローチ
- Authors: Tiago Sousa, Benoît Ries, Nicolas Guelfi,
- Abstract要約: 本研究では,意味的多様性を高めるために拡散モデルを統合する4段階データ拡張手法を提案する。
我々のアプローチは確立された手法を一貫して上回り、意味的に多様なEO画像を生成し、AIモデルの性能を向上させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-quality Earth Observation (EO) imagery is essential for accurate analysis and informed decision making across sectors. However, data scarcity caused by atmospheric conditions, seasonal variations, and limited geographical coverage hinders the effective application of Artificial Intelligence (AI) in EO. Traditional data augmentation techniques, which rely on basic parameterized image transformations, often fail to introduce sufficient diversity across key semantic axes. These axes include natural changes such as snow and floods, human impacts like urbanization and roads, and disasters such as wildfires and storms, which limits the accuracy of AI models in EO applications. To address this, we propose a four-stage data augmentation approach that integrates diffusion models to enhance semantic diversity. Our method employs meta-prompts for instruction generation, vision-language models for rich captioning, EO-specific diffusion model fine-tuning, and iterative data augmentation. Extensive experiments using four augmentation techniques demonstrate that our approach consistently outperforms established methods, generating semantically diverse EO images and improving AI model performance.
- Abstract(参考訳): 高品質な地球観測(EO)画像は、セクター間の正確な分析と情報決定に不可欠である。
しかし、大気条件、季節変動、限られた地理的範囲によって引き起こされるデータ不足は、EOにおける人工知能(AI)の効果的な適用を妨げる。
基本的なパラメータ化画像変換に依存する従来のデータ拡張技術は、キーセマンティック軸間で十分な多様性を導入できないことが多い。
これらの軸には、雪や洪水のような自然の変化、都市化や道路のような人間の影響、山火事や嵐のような災害が含まれており、EOアプリケーションにおけるAIモデルの精度を制限している。
そこで本研究では,意味的多様性を高めるために拡散モデルを統合する4段階データ拡張手法を提案する。
提案手法では,命令生成のためのメタプロンプト,リッチキャプションのためのヴィジュアル言語モデル,EO固有の拡散モデル微調整,反復的データ拡張を用いている。
4つの拡張手法を用いた大規模な実験により、我々のアプローチは確立された手法を一貫して上回り、意味的に多様なEO画像を生成し、AIモデルの性能を向上させる。
関連論文リスト
- Language-Informed Hyperspectral Image Synthesis for Imbalanced-Small Sample Classification via Semi-Supervised Conditional Diffusion Model [1.9746060146273674]
本稿では,新しい言語インフォームドハイパースペクトル画像合成法であるTxt2HSI-LDM(VAE)を提案する。
ハイパースペクトルデータの高次元性に対処するため、普遍変分オートエンコーダ(VAE)は、データを低次元の潜在空間にマッピングするように設計されている。
VAEは、拡散モデルによって生成された潜時空間から言語条件を入力としてHSIをデコードする。
論文 参考訳(メタデータ) (2025-02-27T02:35:49Z) - Dataset Augmentation by Mixing Visual Concepts [3.5420134832331334]
本稿では,事前学習した拡散モデルの微調整によるデータセット拡張手法を提案する。
我々は、拡散モデルに実際の画像と新しいテキスト埋め込みを条件付けすることで適応する。
提案手法は,ベンチマーク分類タスクにおける最先端の強化手法より優れている。
論文 参考訳(メタデータ) (2024-12-19T19:42:22Z) - An Efficient Occupancy World Model via Decoupled Dynamic Flow and Image-assisted Training [50.71892161377806]
DFIT-OccWorldは、分離されたダイナミックフローとイメージアシストトレーニング戦略を活用する、効率的な3D占有世界モデルである。
提案モデルでは, 静止ボクセルはポーズ変換により容易に得られるのに対し, 既存のボクセルフローを用いて既存の観測を歪曲することで, 将来のダイナミックボクセルを予測できる。
論文 参考訳(メタデータ) (2024-12-18T12:10:33Z) - Erase, then Redraw: A Novel Data Augmentation Approach for Free Space Detection Using Diffusion Model [5.57325257338134]
従来のデータ拡張方法は、ハイレベルなセマンティック属性を変更することはできない。
画像から画像への変換をパラメータ化するためのテキスト間拡散モデルを提案する。
我々は、元のデータセットから実際のオブジェクトのインスタンスを消去し、削除されたリージョンで同様の意味を持つ新しいインスタンスを生成することで、この目標を達成する。
論文 参考訳(メタデータ) (2024-09-30T10:21:54Z) - Data Augmentation via Latent Diffusion for Saliency Prediction [67.88936624546076]
残差予測モデルはラベル付きデータの限られた多様性と量によって制約される。
本研究では,実世界のシーンの複雑さと変動性を保ちながら,自然画像の編集を行うディープ・サリエンシ・予測のための新しいデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2024-09-11T14:36:24Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
コンピュータビジョンでは、データの多様性の欠如がモデル性能を損なうことはよく知られている。
本稿では, 生成モデルの進歩を生かして, 単純かつ効果的なデータ拡張手法を提案する。
背景強化は、特にモデルの堅牢性と一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2024-08-01T07:40:00Z) - Quanv4EO: Empowering Earth Observation by means of Quanvolutional Neural Networks [62.12107686529827]
本稿は、大量のリモートセンシングデータの処理において、量子コンピューティング技術を活用することへの大きなシフトを取り上げる。
提案したQuanv4EOモデルでは,多次元EOデータを前処理するための準進化法が導入された。
主要な知見は,提案モデルが画像分類の精度を維持するだけでなく,EOのユースケースの約5%の精度向上を図っていることを示唆している。
論文 参考訳(メタデータ) (2024-07-24T09:11:34Z) - Diff-Mosaic: Augmenting Realistic Representations in Infrared Small Target Detection via Diffusion Prior [63.64088590653005]
本稿では拡散モデルに基づくデータ拡張手法であるDiff-Mosaicを提案する。
我々は,モザイク画像を高度に調整し,リアルな画像を生成するPixel-Priorという拡張ネットワークを導入する。
第2段階では,Diff-Prior という画像強調戦略を提案する。
論文 参考訳(メタデータ) (2024-06-02T06:23:05Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
実世界のアプリケーションでは,音声およびビデオデータに基づくマルチモーダル感情認識が重要である。
近年の手法は、強力なマルチモーダルエンコーダの事前学習に自己教師付き学習(SSL)の進歩を活用することに重点を置いている。
SSL-pre-trained disimodal encoders を用いて,この問題に対する異なる視点とマルチモーダル DFER の性能向上について検討する。
論文 参考訳(メタデータ) (2024-04-13T13:39:26Z) - Diffusion Deepfake [41.59597965760673]
生成AIの最近の進歩は、主に拡散モデルを通じて、現実世界のディープフェイク検出において大きな課題を呈している。
画像の詳細、多様なコンテンツ、そして一般大衆への幅広いアクセス性におけるリアリズムの増加は、これらの洗練されたディープフェイクの識別を複雑にしている。
本稿では,最先端拡散モデルにより生成された2つの広範囲なディープフェイクデータセットを紹介する。
論文 参考訳(メタデータ) (2024-04-02T02:17:50Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
ファインチューニング拡散モデル : 生成人工知能(GenAI)の最前線
本稿では,拡散モデル(SPIN-Diffusion)のための自己演奏ファインチューニングという革新的な手法を紹介する。
提案手法は従来の教師付き微調整とRL戦略の代替として,モデル性能とアライメントの両方を大幅に改善する。
論文 参考訳(メタデータ) (2024-02-15T18:59:18Z) - Expanding Expressiveness of Diffusion Models with Limited Data via
Self-Distillation based Fine-Tuning [24.791783885165923]
限られたデータセット上での拡散モデルの訓練は、限られた生成能力と表現性の観点から問題を引き起こす。
これらの課題に対処するために、SDFT(Self-Distillation for Fine-Tuning diffusion model)を提案する。
論文 参考訳(メタデータ) (2023-11-02T06:24:06Z) - SatDM: Synthesizing Realistic Satellite Image with Semantic Layout
Conditioning using Diffusion Models [0.0]
Denoising Diffusion Probabilistic Models (DDPM) は意味的レイアウトから現実的なイメージを合成する上で大きな可能性を証明している。
本稿では,セマンティックマップを用いて高品質で多様な衛星画像を生成する条件付きDDPMモデルを提案する。
提案モデルの有効性は,本研究の文脈内で導入した詳細なラベル付きデータセットを用いて検証する。
論文 参考訳(メタデータ) (2023-09-28T19:39:13Z) - Boosting Human-Object Interaction Detection with Text-to-Image Diffusion
Model [22.31860516617302]
本稿では,事前学習したテキスト画像拡散モデルに基づく新しいHOI検出方式であるDiffHOIを紹介する。
HOIデータセットのギャップを埋めるために、クラスバランス、大規模、高多様性の合成データセットであるSynHOIを提案する。
実験により、DiffHOIは通常の検出(41.50 mAP)とゼロショット検出において、最先端の技術を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2023-05-20T17:59:23Z) - Data Forensics in Diffusion Models: A Systematic Analysis of Membership
Privacy [62.16582309504159]
本研究では,拡散モデルに対するメンバシップ推論攻撃の系統的解析を開発し,各攻撃シナリオに適した新しい攻撃手法を提案する。
提案手法は容易に入手可能な量を利用して,現実的なシナリオにおいてほぼ完全な攻撃性能 (>0.9 AUCROC) を達成することができる。
論文 参考訳(メタデータ) (2023-02-15T17:37:49Z) - Local Magnification for Data and Feature Augmentation [53.04028225837681]
LOMA(Local Magnification)と呼ばれる,実装が容易かつモデルフリーなデータ拡張手法を提案する。
LOMAは、画像の局所領域をランダムに拡大することにより、追加のトレーニングデータを生成する。
実験の結果,提案するLOMAと標準データ拡張を組み合わせることで,画像分類や物体検出の性能を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-11-15T02:51:59Z) - CoDA: Contrast-enhanced and Diversity-promoting Data Augmentation for
Natural Language Understanding [67.61357003974153]
我々はCoDAと呼ばれる新しいデータ拡張フレームワークを提案する。
CoDAは、複数の変換を有機的に統合することで、多種多様な情報付加例を合成する。
すべてのデータサンプルのグローバルな関係を捉えるために、対照的な正則化の目的を導入する。
論文 参考訳(メタデータ) (2020-10-16T23:57:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。