Remote Implementation of Hidden or Partially Unknown Quantum Operators using Optimal Resources: A Generalized View
- URL: http://arxiv.org/abs/2406.06223v2
- Date: Mon, 2 Sep 2024 11:55:20 GMT
- Title: Remote Implementation of Hidden or Partially Unknown Quantum Operators using Optimal Resources: A Generalized View
- Authors: Satish Kumar, Kuldeep Gangwar, Anirban Pathak,
- Abstract summary: Two protocols are proposed for two closely linked but different variants of remote implementation of quantum operators of specific forms.
In both cases two-qubit maximally entangled state, which is entangled in the spatial degree of freedom is used.
The impact of photon loss due to interaction with the environment is analyzed for both the schemes.
- Score: 1.5566524830295307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Two protocols are proposed for two closely linked but different variants of remote implementation of quantum operators of specific forms. The first protocol is designed for the remote implementation of the single qubit hidden quantum operator, whereas the second one is designed for the remote implementation of the partially unknown single qubit quantum operator. In both cases two-qubit maximally entangled state, which is entangled in the spatial degree of freedom is used. The quantum resources used here are optimal and easy to realize and maintain in comparison to the multi-partite or multi-mode entangled states used in earlier works. The impact of photon loss due to interaction with the environment is analyzed for both the schemes. The proposed protocols are also generalized to their controlled, bidirectional, cyclic, controlled cyclic, and controlled bidirectional versions and it is shown that either Bell state alone or products of Bell states will be sufficient to perform these tasks with some additional classical communications in the controlled cases only. This is in sharp contrast to the earlier proposals that require large entangled states. In addition, it's noted that remote implementation of hidden or partially unknown operators involving multiple controllers and/or multiple players who jointly apply the desired operator(s) would require quantum channels more complex than the Bell states and their products. Explicit forms of such quantum channels are also provided.
Related papers
- Controlled-Joint Remote Implementation of Operators and its Possible
Generalization [1.7495213911983414]
It is shown that the task can be performed using a four-qubit hyperentangled state, which is entangled simultaneously in both spatial and polarization degrees of freedom of photons.
It is also shown that all the existing variants of quantum remote control schemes can be obtained as special cases of the present scheme.
arXiv Detail & Related papers (2024-03-13T17:16:21Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - An Optimized Bidirectional Quantum Teleportation Scheme with the use of
Bell states [0.0]
Bidirectional quantum teleportation scheme is a two-way quantum communication process.
In this paper, we have designed an optimal scheme for bidirectional quantum teleportation scheme.
arXiv Detail & Related papers (2021-12-08T08:17:59Z) - The Role of Localizable Concurrence in Quantum Teleportation Protocols [0.0]
For mixed multi-partite states the lack of computable entanglement measures has made the identification of the quantum resource responsible for this advantage more challenging.
We show that any teleportation protocol using an arbitrary multi-partite state, that includes a Bell measurement, requires a non-vanishing localizable concurrence between two of its parties in order to perform better than the classical protocol.
arXiv Detail & Related papers (2021-06-12T01:00:52Z) - Heterogeneous Multipartite Entanglement Purification for
Size-Constrained Quantum Devices [68.8204255655161]
Purifying entanglement resources after their imperfect generation is an indispensable step towards using them in quantum architectures.
Here we depart from the typical purification paradigm for multipartite states explored in the last twenty years.
We find that smaller sacrificial' states, like Bell pairs, can be more useful in the purification of multipartite states than additional copies of these same states.
arXiv Detail & Related papers (2020-11-23T19:00:00Z) - Protocols for creating and distilling multipartite GHZ states with Bell
pairs [0.0]
distribution of high-quality Greenberger-Horne-Zeilinger (GHZ) states is at the heart of many quantum communication tasks.
We introduce a dynamic programming algorithm to optimize over a large class of protocols that create and purify GHZ states.
arXiv Detail & Related papers (2020-10-23T09:40:01Z) - Quantifying the performance of bidirectional quantum teleportation [6.345523830122166]
Bidirectional teleportation is a fundamental protocol for exchanging quantum information between two parties.
We develop two ways of quantifying the simulation error of unideal bidirectional teleportation.
We find semi-definite programming lower bounds on the simulation error of unideal bidirectional teleportation.
arXiv Detail & Related papers (2020-10-15T17:36:17Z) - Genuine quantum networks: superposed tasks and addressing [68.8204255655161]
We show how to make quantum networks, both standard and entanglement-based, genuine quantum.
We provide them with the possibility of handling superposed tasks and superposed addressing.
arXiv Detail & Related papers (2020-04-30T18:00:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.