Scalable modular architecture for universal quantum computation
- URL: http://arxiv.org/abs/2507.14691v1
- Date: Sat, 19 Jul 2025 16:45:47 GMT
- Title: Scalable modular architecture for universal quantum computation
- Authors: Fernando Gago-Encinas, Christiane P. Koch,
- Abstract summary: We show that it is sufficient to connect two qubit arrays that are evolution operator controllable by a single entangling two-qubit gate.<n>Our proof provides a template to build up modular QPUs from smaller building blocks with reduced numbers of local controls and couplings.
- Score: 49.1574468325115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Universal quantum computing requires the ability to perform every unitary operation, i.e., evolution operator controllability. In view of developing resource-efficient quantum processing units (QPUs), it is important to determine how many local controls and qubit-qubit couplings are required for controllability. Unfortunately, assessing the controllability of large qubit arrays is a difficult task, due to the exponential scaling of Hilbert space dimension. Here we show that it is sufficient to connect two qubit arrays that are evolution operator controllable by a single entangling two-qubit gate in order to obtain a composite qubit array that is evolution operator controllable. Our proof provides a template to build up modular QPUs from smaller building blocks with reduced numbers of local controls and couplings. We illustrate the approach with two examples, consisting of 10, respectively 127 qubits, inspired by IBM quantum processors.
Related papers
- Elementary Quantum Arithmetic Logic Units for Near-Term Quantum Computers [0.0]
We propose feasible quantum arithmetic logic units (QALUs) for near-term quantum computers with qubits arranged in two-dimensional arrays.
We introduce a feasible quantum arithmetic operation to compute the two's complement representation of signed integers.
Our work demonstrates a viable implementation of QALUs on near-term quantum computers, advancing towards scalable and resource-efficient quantum arithmetic operations.
arXiv Detail & Related papers (2024-08-13T01:49:58Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Determining the ability for universal quantum computing: Testing
controllability via dimensional expressivity [39.58317527488534]
Controllability tests can be used in the design of quantum devices to reduce the number of external controls.
We devise a hybrid quantum-classical algorithm based on a parametrized quantum circuit.
arXiv Detail & Related papers (2023-08-01T15:33:41Z) - Pipeline quantum processor architecture for silicon spin qubits [0.0]
Noisy intermediate-scale quantum (NISQ) devices seek to achieve quantum advantage over classical systems.
We propose a NISQ processor architecture using a qubit pipeline' in which all run-time control is applied globally.
This is achieved by progressing qubit states through a layered physical array of structures.
arXiv Detail & Related papers (2023-06-13T10:35:01Z) - Direct pulse-level compilation of arbitrary quantum logic gates on superconducting qutrits [36.30869856057226]
We demonstrate any arbitrary qubit and qutrit gate can be realized with high-fidelity, which can significantly reduce the length of a gate sequence.
We show that optimal control gates are robust to drift for at least three hours and that the same calibration parameters can be used for all implemented gates.
arXiv Detail & Related papers (2023-03-07T22:15:43Z) - Graph test of controllability in qubit arrays: A systematic way to
determine the minimum number of external controls [62.997667081978825]
We show how to leverage an alternative approach, based on a graph representation of the Hamiltonian, to determine controllability of arrays of coupled qubits.
We find that the number of controls can be reduced from five to one for complex qubit-qubit couplings.
arXiv Detail & Related papers (2022-12-09T12:59:44Z) - Resource Optimisation of Coherently Controlled Quantum Computations with
the PBS-calculus [55.2480439325792]
Coherent control of quantum computations can be used to improve some quantum protocols and algorithms.
We refine the PBS-calculus, a graphical language for coherent control inspired by quantum optics.
arXiv Detail & Related papers (2022-02-10T18:59:52Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z) - Signal processing techniques for efficient compilation of controlled
rotations in trapped ions [0.0]
We consider a sequence of equal all-to-all MS operations, interleaved with single qubit gates that act only on one special qubit.
We find that it is possible to perform an arbitray SU(2) rotation on the special qubit if and only if all other qubits are in the state.
Such controlled rotation gates with N-1 control qubits require 2N applications of the MS gate, and can be mapped to a conventional Toffoli gate by demoting a single qubit to ancilla.
arXiv Detail & Related papers (2020-01-15T11:02:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.