PAC-Bayes Analysis for Recalibration in Classification
- URL: http://arxiv.org/abs/2406.06227v1
- Date: Mon, 10 Jun 2024 12:53:13 GMT
- Title: PAC-Bayes Analysis for Recalibration in Classification
- Authors: Masahiro Fujisawa, Futoshi Futami,
- Abstract summary: We conduct a generalization analysis of the calibration error under the probably approximately correct (PAC) Bayes framework.
We then propose a generalization-aware recalibration algorithm based on our generalization theory.
- Score: 4.005483185111992
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nonparametric estimation with binning is widely employed in the calibration error evaluation and the recalibration of machine learning models. Recently, theoretical analyses of the bias induced by this estimation approach have been actively pursued; however, the understanding of the generalization of the calibration error to unknown data remains limited. In addition, although many recalibration algorithms have been proposed, their generalization performance lacks theoretical guarantees. To address this problem, we conduct a generalization analysis of the calibration error under the probably approximately correct (PAC) Bayes framework. This approach enables us to derive a first optimizable upper bound for the generalization error in the calibration context. We then propose a generalization-aware recalibration algorithm based on our generalization theory. Numerical experiments show that our algorithm improves the Gaussian-process-based recalibration performance on various benchmark datasets and models.
Related papers
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
We provide the first proof of convergence for normalized error feedback algorithms across a wide range of machine learning problems.
We show that due to their larger allowable stepsizes, our new normalized error feedback algorithms outperform their non-normalized counterparts on various tasks.
arXiv Detail & Related papers (2024-10-22T10:19:27Z) - Estimating Generalization Performance Along the Trajectory of Proximal SGD in Robust Regression [4.150180443030652]
We introduce estimators that precisely track the generalization error of the iterates along the trajectory of the iterative algorithm.
The results are illustrated through several examples, including Huber regression, pseudo-Huber regression, and their penalized variants with non-smooth regularizer.
arXiv Detail & Related papers (2024-10-03T16:13:42Z) - A naive aggregation algorithm for improving generalization in a class of learning problems [0.0]
We present a naive aggregation algorithm for a typical learning problem with expert advice setting.
In particular, we consider a class of learning problem of point estimations for modeling high-dimensional nonlinear functions.
arXiv Detail & Related papers (2024-09-06T15:34:17Z) - Orthogonal Causal Calibration [55.28164682911196]
We prove generic upper bounds on the calibration error of any causal parameter estimate $theta$ with respect to any loss $ell$.
We use our bound to analyze the convergence of two sample splitting algorithms for causal calibration.
arXiv Detail & Related papers (2024-06-04T03:35:25Z) - Information-theoretic Generalization Analysis for Expected Calibration Error [4.005483185111992]
We present the first comprehensive analysis of the estimation bias in the two common binning strategies, uniform mass and uniform width binning.
Our bounds reveal, for the first time, the optimal number of bins to minimize the estimation bias.
We extend our bias analysis to generalization error analysis based on the information-theoretic approach.
arXiv Detail & Related papers (2024-05-24T16:59:29Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
We introduce kernel-based calibration metrics that unify and generalize popular forms of calibration for both classification and regression.
These metrics admit differentiable sample estimates, making it easy to incorporate a calibration objective into empirical risk minimization.
We provide intuitive mechanisms to tailor calibration metrics to a decision task, and enforce accurate loss estimation and no regret decisions.
arXiv Detail & Related papers (2023-10-31T06:19:40Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
State-of-the-art approaches for designing calibrated models rely on inflating the Gaussian process posterior variance.
We present a calibration approach that generates predictive quantiles using a computation inspired by the vanilla Gaussian process posterior variance.
Our approach is shown to yield a calibrated model under reasonable assumptions.
arXiv Detail & Related papers (2023-02-23T12:17:36Z) - Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
with List Stability [107.65337427333064]
optimization of the Area Under the Precision-Recall Curve (AUPRC) is a crucial problem for machine learning.
In this work, we present the first trial in the single-dependent generalization of AUPRC optimization.
Experiments on three image retrieval datasets on speak to the effectiveness and soundness of our framework.
arXiv Detail & Related papers (2022-09-27T09:06:37Z) - Modular Conformal Calibration [80.33410096908872]
We introduce a versatile class of algorithms for recalibration in regression.
This framework allows one to transform any regression model into a calibrated probabilistic model.
We conduct an empirical study of MCC on 17 regression datasets.
arXiv Detail & Related papers (2022-06-23T03:25:23Z) - Towards Data-Algorithm Dependent Generalization: a Case Study on
Overparameterized Linear Regression [19.047997113063147]
We introduce a notion called data-algorithm compatibility, which considers the generalization behavior of the entire data-dependent training trajectory.
We perform a data-dependent trajectory analysis and derive a sufficient condition for compatibility in such a setting.
arXiv Detail & Related papers (2022-02-12T12:42:36Z) - Learning Prediction Intervals for Regression: Generalization and
Calibration [12.576284277353606]
We study the generation of prediction intervals in regression for uncertainty quantification.
We use a general learning theory to characterize the optimality-feasibility tradeoff that encompasses Lipschitz continuity and VC-subgraph classes.
We empirically demonstrate the strengths of our interval generation and calibration algorithms in terms of testing performances compared to existing benchmarks.
arXiv Detail & Related papers (2021-02-26T17:55:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.