I-MPN: Inductive Message Passing Network for Efficient Human-in-the-Loop Annotation of Mobile Eye Tracking Data
- URL: http://arxiv.org/abs/2406.06239v2
- Date: Sun, 7 Jul 2024 21:13:44 GMT
- Title: I-MPN: Inductive Message Passing Network for Efficient Human-in-the-Loop Annotation of Mobile Eye Tracking Data
- Authors: Hoang H. Le, Duy M. H. Nguyen, Omair Shahzad Bhatti, Laszlo Kopacsi, Thinh P. Ngo, Binh T. Nguyen, Michael Barz, Daniel Sonntag,
- Abstract summary: We present a novel human-centered learning algorithm designed for automated object recognition within mobile eye-tracking settings.
Our approach seamlessly integrates an object detector with a spatial relation-aware inductive message-passing network (I-MPN), harnessing node profile information and capturing object correlations.
- Score: 4.487146086221174
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Comprehending how humans process visual information in dynamic settings is crucial for psychology and designing user-centered interactions. While mobile eye-tracking systems combining egocentric video and gaze signals can offer valuable insights, manual analysis of these recordings is time-intensive. In this work, we present a novel human-centered learning algorithm designed for automated object recognition within mobile eye-tracking settings. Our approach seamlessly integrates an object detector with a spatial relation-aware inductive message-passing network (I-MPN), harnessing node profile information and capturing object correlations. Such mechanisms enable us to learn embedding functions capable of generalizing to new object angle views, facilitating rapid adaptation and efficient reasoning in dynamic contexts as users navigate their environment. Through experiments conducted on three distinct video sequences, our interactive-based method showcases significant performance improvements over fixed training/testing algorithms, even when trained on considerably smaller annotated samples collected through user feedback. Furthermore, we demonstrate exceptional efficiency in data annotation processes and surpass prior interactive methods that use complete object detectors, combine detectors with convolutional networks, or employ interactive video segmentation.
Related papers
- Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
We propose a visual-geometric collaborative guided affordance learning network that incorporates visual and geometric cues.
Our method outperforms the representative models regarding objective metrics and visual quality.
arXiv Detail & Related papers (2024-10-15T07:35:51Z) - Spatio-Temporal Context Prompting for Zero-Shot Action Detection [13.22912547389941]
We propose a method which can effectively leverage the rich knowledge of visual-language models to perform Person-Context Interaction.
To address the challenge of recognizing distinct actions by multiple people at the same timestamp, we design the Interest Token Spotting mechanism.
Our method achieves superior results compared to previous approaches and can be further extended to multi-action videos.
arXiv Detail & Related papers (2024-08-28T17:59:05Z) - Learning Manipulation by Predicting Interaction [85.57297574510507]
We propose a general pre-training pipeline that learns Manipulation by Predicting the Interaction.
The experimental results demonstrate that MPI exhibits remarkable improvement by 10% to 64% compared with previous state-of-the-art in real-world robot platforms.
arXiv Detail & Related papers (2024-06-01T13:28:31Z) - Towards Zero-shot Human-Object Interaction Detection via Vision-Language
Integration [14.678931157058363]
We propose a novel framework, termed Knowledge Integration to HOI (KI2HOI), that effectively integrates the knowledge of visual-language model to improve zero-shot HOI detection.
We develop an effective additive self-attention mechanism to generate more comprehensive visual representations.
Our model outperforms the previous methods in various zero-shot and full-supervised settings.
arXiv Detail & Related papers (2024-03-12T02:07:23Z) - Learn to Predict How Humans Manipulate Large-sized Objects from
Interactive Motions [82.90906153293585]
We propose a graph neural network, HO-GCN, to fuse motion data and dynamic descriptors for the prediction task.
We show the proposed network that consumes dynamic descriptors can achieve state-of-the-art prediction results and help the network better generalize to unseen objects.
arXiv Detail & Related papers (2022-06-25T09:55:39Z) - Spatial Parsing and Dynamic Temporal Pooling networks for Human-Object
Interaction detection [30.896749712316222]
This paper introduces the Spatial Parsing and Dynamic Temporal Pooling (SPDTP) network, which takes the entire video as atemporal graph with human and object nodes as input.
We achieve state-of-the-art performance on CAD-120 and Something-Else dataset.
arXiv Detail & Related papers (2022-06-07T07:26:06Z) - Skeleton-Based Mutually Assisted Interacted Object Localization and
Human Action Recognition [111.87412719773889]
We propose a joint learning framework for "interacted object localization" and "human action recognition" based on skeleton data.
Our method achieves the best or competitive performance with the state-of-the-art methods for human action recognition.
arXiv Detail & Related papers (2021-10-28T10:09:34Z) - Weakly Supervised Human-Object Interaction Detection in Video via
Contrastive Spatiotemporal Regions [81.88294320397826]
A system does not know what human-object interactions are present in a video as or the actual location of the human and object.
We introduce a dataset comprising over 6.5k videos with human-object interaction that have been curated from sentence captions.
We demonstrate improved performance over weakly supervised baselines adapted to our annotations on our video dataset.
arXiv Detail & Related papers (2021-10-07T15:30:18Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
We propose a novel online approach of multi-modal graph network (i.e., MRG-Net) to dynamically integrate visual and kinematics information.
The effectiveness of our method is demonstrated with state-of-the-art results on the public JIGSAWS dataset.
arXiv Detail & Related papers (2020-11-03T11:00:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.