Building Continuous Quantum-Classical Bayesian Neural Networks for a Classical Clinical Dataset
- URL: http://arxiv.org/abs/2406.06307v1
- Date: Mon, 10 Jun 2024 14:23:25 GMT
- Title: Building Continuous Quantum-Classical Bayesian Neural Networks for a Classical Clinical Dataset
- Authors: Alona Sakhnenko, Julian Sikora, Jeanette Miriam Lorenz,
- Abstract summary: We introduce a Quantum-Classical Bayesian Neural Network (QCBNN) that is capable to perform uncertainty-aware classification of medical dataset.
We track multiple behavioral metrics that capture both predictive performance as well as model's uncertainty.
It is our ambition to create a hybrid model that is capable to classify samples in a more uncertainty aware fashion.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we are introducing a Quantum-Classical Bayesian Neural Network (QCBNN) that is capable to perform uncertainty-aware classification of classical medical dataset. This model is a symbiosis of a classical Convolutional NN that performs ultra-sound image processing and a quantum circuit that generates its stochastic weights, within a Bayesian learning framework. To test the utility of this idea for the possible future deployment in the medical sector we track multiple behavioral metrics that capture both predictive performance as well as model's uncertainty. It is our ambition to create a hybrid model that is capable to classify samples in a more uncertainty aware fashion, which will advance the trustworthiness of these models and thus bring us step closer to utilizing them in the industry. We test multiple setups for quantum circuit for this task, and our best architectures display bigger uncertainty gap between correctly and incorrectly identified samples than its classical benchmark at an expense of a slight drop in predictive performance. The innovation of this paper is two-fold: (1) combining of different approaches that allow the stochastic weights from the quantum circuit to be continues thus allowing the model to classify application-driven dataset; (2) studying architectural features of quantum circuit that make-or-break these models, which pave the way into further investigation of more informed architectural designs.
Related papers
- Coherent Feed Forward Quantum Neural Network [2.1178416840822027]
Quantum machine learning, focusing on quantum neural networks (QNNs), remains a vastly uncharted field of study.
We introduce a bona fide QNN model, which seamlessly aligns with the versatility of a traditional FFNN in terms of its adaptable intermediate layers and nodes.
We test our proposed model on various benchmarking datasets such as the diagnostic breast cancer (Wisconsin) and credit card fraud detection datasets.
arXiv Detail & Related papers (2024-02-01T15:13:26Z) - Bridging Classical and Quantum Machine Learning: Knowledge Transfer From
Classical to Quantum Neural Networks Using Knowledge Distillation [0.0]
This paper introduces a new method to transfer knowledge from classical to quantum neural networks using knowledge distillation.
We adapt classical convolutional neural network (CNN) architectures like LeNet and AlexNet to serve as teacher networks.
Quantum models achieve an average accuracy improvement of 0.80% on the MNIST dataset and 5.40% on the more complex Fashion MNIST dataset.
arXiv Detail & Related papers (2023-11-23T05:06:43Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
Generative modeling is a widely accepted natural use case for quantum computers.
We construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance.
Our simulation results show that our quantum-inspired models have up to a $68 times$ enhancement in generating unseen unique and valid samples.
arXiv Detail & Related papers (2022-01-21T16:35:35Z) - Binary classifiers for noisy datasets: a comparative study of existing
quantum machine learning frameworks and some new approaches [0.0]
We apply Quantum Machine Learning frameworks to improve binary classification.
noisy datasets are in financial datasets.
New models exhibit better learning characteristics to asymmetrical noise in the dataset.
arXiv Detail & Related papers (2021-11-05T10:29:05Z) - On Circuit-based Hybrid Quantum Neural Networks for Remote Sensing
Imagery Classification [88.31717434938338]
The hybrid QCNNs enrich the classical architecture of CNNs by introducing a quantum layer within a standard neural network.
The novel QCNN proposed in this work is applied to the Land Use and Land Cover (LULC) classification, chosen as an Earth Observation (EO) use case.
The results of the multiclass classification prove the effectiveness of the presented approach, by demonstrating that the QCNN performances are higher than the classical counterparts.
arXiv Detail & Related papers (2021-09-20T12:41:50Z) - The dilemma of quantum neural networks [63.82713636522488]
We show that quantum neural networks (QNNs) fail to provide any benefit over classical learning models.
QNNs suffer from the severely limited effective model capacity, which incurs poor generalization on real-world datasets.
These results force us to rethink the role of current QNNs and to design novel protocols for solving real-world problems with quantum advantages.
arXiv Detail & Related papers (2021-06-09T10:41:47Z) - Quantum Machine Learning with SQUID [64.53556573827525]
We present the Scaled QUantum IDentifier (SQUID), an open-source framework for exploring hybrid Quantum-Classical algorithms for classification problems.
We provide examples of using SQUID in a standard binary classification problem from the popular MNIST dataset.
arXiv Detail & Related papers (2021-04-30T21:34:11Z) - Quantum Self-Supervised Learning [22.953284192004034]
We propose a hybrid quantum-classical neural network architecture for contrastive self-supervised learning.
We apply our best quantum model to classify unseen images on the ibmq_paris quantum computer.
arXiv Detail & Related papers (2021-03-26T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.