A Parameter-efficient Language Extension Framework for Multilingual ASR
- URL: http://arxiv.org/abs/2406.06329v1
- Date: Mon, 10 Jun 2024 14:46:07 GMT
- Title: A Parameter-efficient Language Extension Framework for Multilingual ASR
- Authors: Wei Liu, Jingyong Hou, Dong Yang, Muyong Cao, Tan Lee,
- Abstract summary: We propose an architecture-based framework for language extension.
It is designed to be parameter-efficient, incrementally incorporating an add-on module to adapt to a new language.
Experiments are carried out on 5 new languages with a wide range of low-performing data sizes.
- Score: 25.758826304861948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Covering all languages with a multilingual speech recognition model (MASR) is very difficult. Performing language extension on top of an existing MASR is a desirable choice. In this study, the MASR continual learning problem is probabilistically decomposed into language identity prediction (LP) and cross-lingual adaptation (XLA) sub-problems. Based on this, we propose an architecture-based framework for language extension that can fundamentally solve catastrophic forgetting, debudded as PELE. PELE is designed to be parameter-efficient, incrementally incorporating an add-on module to adapt to a new language. Specifically, different parameter-efficient fine-tuning (PEFT) modules and their variants are explored as potential candidates to perform XLA. Experiments are carried out on 5 new languages with a wide range of low-resourced data sizes. The best-performing PEFT candidate can achieve satisfactory performance across all languages and demonstrates superiority in three of five languages over the continual joint learning setting. Notably, PEFT methods focusing on weight parameters or input features are revealed to be limited in performance, showing significantly inferior extension capabilities compared to inserting a lightweight module in between layers such as an Adapter.
Related papers
- MoE-LPR: Multilingual Extension of Large Language Models through Mixture-of-Experts with Language Priors Routing [78.62611800987817]
Large Language Models (LLMs) are often English-centric due to the disproportionate distribution of languages in their pre-training data.
We propose a method called MoE-LPR (Mixture-of-Experts with Language Priors) to enhance the multilingual capability.
arXiv Detail & Related papers (2024-08-21T07:43:49Z) - Learn and Don't Forget: Adding a New Language to ASR Foundation Models [33.98622415462255]
Foundation ASR models often support many languages, e.g. 100 languages in Whisper.
Fine-tuning, while simple, may degrade the accuracy of the original set.
EWC offers an alternative compromise with the potential to maintain performance in specific target languages.
arXiv Detail & Related papers (2024-07-09T12:14:48Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z) - Continual Learning in Multilingual NMT via Language-Specific Embeddings [92.91823064720232]
It consists in replacing the shared vocabulary with a small language-specific vocabulary and fine-tuning the new embeddings on the new language's parallel data.
Because the parameters of the original model are not modified, its performance on the initial languages does not degrade.
arXiv Detail & Related papers (2021-10-20T10:38:57Z) - Efficient Test Time Adapter Ensembling for Low-resource Language
Varieties [115.12997212870962]
Specialized language and task adapters have been proposed to facilitate cross-lingual transfer of multilingual pretrained models.
An intuitive solution is to use a related language adapter for the new language variety, but we observe that this solution can lead to sub-optimal performance.
In this paper, we aim to improve the robustness of language adapters to uncovered languages without training new adapters.
arXiv Detail & Related papers (2021-09-10T13:44:46Z) - MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer [136.09386219006123]
We propose MAD-X, an adapter-based framework that enables high portability and parameter-efficient transfer to arbitrary tasks and languages.
MAD-X outperforms the state of the art in cross-lingual transfer across a representative set of typologically diverse languages on named entity recognition and causal commonsense reasoning.
arXiv Detail & Related papers (2020-04-30T18:54:43Z) - Learning to Scale Multilingual Representations for Vision-Language Tasks [51.27839182889422]
The effectiveness of SMALR is demonstrated with ten diverse languages, over twice the number supported in vision-language tasks to date.
We evaluate on multilingual image-sentence retrieval and outperform prior work by 3-4% with less than 1/5th the training parameters compared to other word embedding methods.
arXiv Detail & Related papers (2020-04-09T01:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.