Learn and Don't Forget: Adding a New Language to ASR Foundation Models
- URL: http://arxiv.org/abs/2407.06800v3
- Date: Tue, 24 Sep 2024 15:04:49 GMT
- Title: Learn and Don't Forget: Adding a New Language to ASR Foundation Models
- Authors: Mengjie Qian, Siyuan Tang, Rao Ma, Kate M. Knill, Mark J. F. Gales,
- Abstract summary: Foundation ASR models often support many languages, e.g. 100 languages in Whisper.
Fine-tuning, while simple, may degrade the accuracy of the original set.
EWC offers an alternative compromise with the potential to maintain performance in specific target languages.
- Score: 33.98622415462255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Foundation ASR models often support many languages, e.g. 100 languages in Whisper. However, there has been limited work on integrating an additional, typically low-resource, language, while maintaining performance on the original language set. Fine-tuning, while simple, may degrade the accuracy of the original set. We compare three approaches that exploit adaptation parameters: soft language code tuning, train only the language code; soft prompt tuning, train prepended tokens; and LoRA where a small set of additional parameters are optimised. Elastic Weight Consolidation (EWC) offers an alternative compromise with the potential to maintain performance in specific target languages. Results show that direct fine-tuning yields the best performance for the new language but degrades existing language capabilities. EWC can address this issue for specific languages. If only adaptation parameters are used, the language capabilities are maintained but at the cost of performance in the new language.
Related papers
- A Parameter-efficient Language Extension Framework for Multilingual ASR [25.758826304861948]
We propose an architecture-based framework for language extension.
It is designed to be parameter-efficient, incrementally incorporating an add-on module to adapt to a new language.
Experiments are carried out on 5 new languages with a wide range of low-performing data sizes.
arXiv Detail & Related papers (2024-06-10T14:46:07Z) - Accelerating Multilingual Language Model for Excessively Tokenized Languages [3.5570874721859016]
tokenizers in large language models (LLMs) often fragment a text into character or Unicode-level tokens in non-Roman alphabetic languages.
We introduce a simple yet effective framework to accelerate text generation in such languages.
arXiv Detail & Related papers (2024-01-19T12:26:57Z) - Efficient Adapter Finetuning for Tail Languages in Streaming
Multilingual ASR [44.949146169903074]
The heterogeneous nature and imbalanced data abundance of different languages may cause performance degradation.
Our proposed method brings 12.2% word error rate reduction on average and up to 37.5% on a single locale.
arXiv Detail & Related papers (2024-01-17T06:01:16Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z) - InstructAlign: High-and-Low Resource Language Alignment via Continual
Crosslingual Instruction Tuning [66.31509106146605]
Large language models (LLMs) that are tuned with instructions have demonstrated remarkable capabilities in various tasks and languages.
However, their ability to generalize to underrepresented languages is limited due to the scarcity of available data.
We propose InstructAlign which uses continual crosslingual instruction tuning to enable LLMs to align new unseen languages with previously learned high-resource languages.
arXiv Detail & Related papers (2023-05-23T02:51:34Z) - BLOOM+1: Adding Language Support to BLOOM for Zero-Shot Prompting [50.24676567971536]
The BLOOM model is a large publicly available multilingual language model, but its pretraining was limited to 46 languages.
We apply existing language adaptation strategies to BLOOM and benchmark its zero-shot prompting performance on eight new languages.
We conclude that with sufficient training data language adaptation can generalize well to diverse languages.
arXiv Detail & Related papers (2022-12-19T15:24:45Z) - Lifting the Curse of Multilinguality by Pre-training Modular
Transformers [72.46919537293068]
multilingual pre-trained models suffer from the curse of multilinguality, which causes per-language performance to drop as they cover more languages.
We introduce language-specific modules, which allows us to grow the total capacity of the model, while keeping the total number of trainable parameters per language constant.
Our approach enables adding languages post-hoc with no measurable drop in performance, no longer limiting the model usage to the set of pre-trained languages.
arXiv Detail & Related papers (2022-05-12T17:59:56Z) - Continual Learning in Multilingual NMT via Language-Specific Embeddings [92.91823064720232]
It consists in replacing the shared vocabulary with a small language-specific vocabulary and fine-tuning the new embeddings on the new language's parallel data.
Because the parameters of the original model are not modified, its performance on the initial languages does not degrade.
arXiv Detail & Related papers (2021-10-20T10:38:57Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
Massively multilingual language models such as multilingual BERT (mBERT) and XLM-R offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks.
Due to their limited capacity and large differences in pretraining data, there is a profound performance gap between resource-rich and resource-poor target languages.
We propose novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts.
arXiv Detail & Related papers (2020-12-31T11:37:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.