論文の概要: Predicting Heart Activity from Speech using Data-driven and Knowledge-based features
- arxiv url: http://arxiv.org/abs/2406.06341v1
- Date: Mon, 10 Jun 2024 15:01:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 13:38:29.276310
- Title: Predicting Heart Activity from Speech using Data-driven and Knowledge-based features
- Title(参考訳): データ駆動・知識に基づく音声からの心臓活動予測
- Authors: Gasser Elbanna, Zohreh Mostaani, Mathew Magimai. -Doss,
- Abstract要約: 自己教師型音声モデルは, 心臓活動パラメータの予測において, 音響特性よりも優れていることを示す。
これらの結果は、こうしたタスクにおけるデータ駆動型表現の価値を浮き彫りにした。
- 参考スコア(独自算出の注目度): 19.14666002797423
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Accurately predicting heart activity and other biological signals is crucial for diagnosis and monitoring. Given that speech is an outcome of multiple physiological systems, a significant body of work studied the acoustic correlates of heart activity. Recently, self-supervised models have excelled in speech-related tasks compared to traditional acoustic methods. However, the robustness of data-driven representations in predicting heart activity remained unexplored. In this study, we demonstrate that self-supervised speech models outperform acoustic features in predicting heart activity parameters. We also emphasize the impact of individual variability on model generalizability. These findings underscore the value of data-driven representations in such tasks and the need for more speech-based physiological data to mitigate speaker-related challenges.
- Abstract(参考訳): 心臓活動やその他の生物学的信号の正確な予測は、診断とモニタリングに不可欠である。
音声が複数の生理システムの結果であることを考えると、心臓活動の音響的相関を研究対象とした研究が盛んである。
近年,従来の音響手法と比較して,自己教師付きモデルは音声関連作業に優れている。
しかし、心臓活動の予測におけるデータ駆動表現の堅牢性は未解明のままであった。
本研究では,自己教師型音声モデルが心臓活動パラメータの予測において音響特性より優れていることを示す。
また、モデル一般化性に対する個人変数の影響も強調する。
これらの知見は、このようなタスクにおけるデータ駆動表現の価値と、話者に関連する課題を軽減するために、より多くの音声ベースの生理的データが必要であることを明らかにする。
関連論文リスト
- Exploring Differences between Human Perception and Model Inference in Audio Event Recognition [26.60579496336448]
本稿では,AER(Audio Event Recognition)における意味的重要性の概念を紹介する。
人間の知覚とモデル推論の違いを探求することに焦点を当てている。
本稿では,人間のアノテーションとアンサンブル事前学習モデルの予測を比較することで,人間の知覚とモデル推論の間に有意な差があることを明らかにする。
論文 参考訳(メタデータ) (2024-09-10T15:19:50Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Interpreting Pretrained Speech Models for Automatic Speech Assessment of Voice Disorders [0.8796261172196743]
我々は、音声障害検出の文脈において、オーディオスペクトログラム変換器の2つの構成を訓練し比較する。
本研究では,モデルが予測を行うときのスペクトル領域の計算的関連性であるモデル関連性マップを作成するために,アテンションロールアウト手法を適用した。
我々はこれらのマップを用いて、モデルが異なる条件下でどのように予測を行うかを分析し、モデルが微調整されるにつれて注意の拡散が減少することを示す。
論文 参考訳(メタデータ) (2024-06-29T21:14:48Z) - Evaluating Speaker Identity Coding in Self-supervised Models and Humans [0.42303492200814446]
話者のアイデンティティは、人間のコミュニケーションにおいて重要な役割を担い、社会的応用においてますます利用されている。
本研究では, 話者識別において, 音響的表現よりも, 話者識別において, 異なる家族の自己指導的表現の方が有意に優れていることを示す。
また、このような話者識別タスクは、これらの強力なネットワークの異なる層における音響情報表現の性質をよりよく理解するためにも利用できることを示す。
論文 参考訳(メタデータ) (2024-06-14T20:07:21Z) - Show from Tell: Audio-Visual Modelling in Clinical Settings [58.88175583465277]
臨床環境でのオーディオ・ビジュアル・モデリングを考察し、人間の専門的アノテーションを使わずに医学的表現を学習するためのソリューションを提供する。
この目的のために, 単純かつ効果的なマルチモーダル自己教師型学習フレームワークを提案する。
提案手法は,音声のみを基準として,超音波画像中の解剖学的関心領域をローカライズすることができる。
論文 参考訳(メタデータ) (2023-10-25T08:55:48Z) - Analysing the Impact of Audio Quality on the Use of Naturalistic
Long-Form Recordings for Infant-Directed Speech Research [62.997667081978825]
早期言語習得のモデリングは、幼児が言語スキルをブートストラップする方法を理解することを目的としている。
近年の進歩により、より自然主義的なトレーニングデータを計算モデルに利用できるようになった。
音質がこれらのデータに対する分析やモデリング実験にどう影響するかは、現時点では不明である。
論文 参考訳(メタデータ) (2023-05-03T08:25:37Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
このコントリビューションは、トレーニングデータを統計的にキュレートし、人間の身体的特性がHARのパフォーマンスにどの程度影響するかを評価する。
時系列HARのセンサ,アクティビティ,記録の異なる2つのHARデータセット上で,最先端の畳み込みニューラルネットワークの性能を評価する。
論文 参考訳(メタデータ) (2023-01-19T12:33:50Z) - Insights on Modelling Physiological, Appraisal, and Affective Indicators
of Stress using Audio Features [10.093374748790037]
被験者がストレスエピソードを誘発している最中に収集した音声サンプルを用いて、個人ストレス応答の自動的特徴付けの有望な結果を示した。
我々は, 音声信号が生理的バイオマーカーのモデル化に適しているかどうかについて, 新たな知見を提示する。
論文 参考訳(メタデータ) (2022-05-09T14:32:38Z) - Hybrid Handcrafted and Learnable Audio Representation for Analysis of
Speech Under Cognitive and Physical Load [17.394964035035866]
音声におけるタスク負荷検出のための5つのデータセットを提案する。
音声記録は、ボランティアのコホートに認知的ストレスまたは身体的ストレスが引き起こされたとして収集された。
このデータセットを用いて、新たな自己教師型音声表現の設計と評価を行った。
論文 参考訳(メタデータ) (2022-03-30T19:43:21Z) - Measuring the Impact of Individual Domain Factors in Self-Supervised
Pre-Training [60.825471653739555]
音素領域因子は事前学習において重要な役割を担っているが,文法的・統語的要因はそれほど重要ではない。
本研究は,音声認識のための自己教師付き事前学習における事前学習セットのドメイン特性をよりよく理解するための最初の研究である。
論文 参考訳(メタデータ) (2022-03-01T17:40:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。