論文の概要: Deep State-Space Generative Model For Correlated Time-to-Event Predictions
- arxiv url: http://arxiv.org/abs/2407.19371v1
- Date: Sun, 28 Jul 2024 02:42:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 18:32:13.557004
- Title: Deep State-Space Generative Model For Correlated Time-to-Event Predictions
- Title(参考訳): 相関時間-事象予測のための深部状態空間生成モデル
- Authors: Yuan Xue, Denny Zhou, Nan Du, Andrew M. Dai, Zhen Xu, Kun Zhang, Claire Cui,
- Abstract要約: そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
- 参考スコア(独自算出の注目度): 54.3637600983898
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Capturing the inter-dependencies among multiple types of clinically-critical events is critical not only to accurate future event prediction, but also to better treatment planning. In this work, we propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events (e.g., kidney failure, mortality) by explicitly modeling the temporal dynamics of patients' latent states. Based on these learned patient states, we further develop a new general discrete-time formulation of the hazard rate function to estimate the survival distribution of patients with significantly improved accuracy. Extensive evaluations over real EMR data show that our proposed model compares favorably to various state-of-the-art baselines. Furthermore, our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
- Abstract(参考訳): 複数種類の臨床的に重要な事象の相互依存関係を捕捉することは、正確な将来の事象予測だけでなく、治療計画の改善にも重要である。
本研究では,患者の潜伏状態の時間的ダイナミクスを明示的にモデル化することにより,関連性のある臨床事象(腎不全,死亡など)の相互作用を捉えるための潜伏状態空間生成モデルを提案する。
本研究は,これらの患者状態に基づいて,より精度のよい患者の生存率分布を推定するために,新たな一般離散時間型ハザードレート関数の定式化を更に進める。
実EMRデータに対する広範囲な評価は,提案モデルが様々な最先端のベースラインと良好に比較できることを示している。
さらに, 死亡率と臓器不全の関連性について有意な知見が得られた。
関連論文リスト
- Conditional Score-Based Diffusion Model for Cortical Thickness
Trajectory Prediction [29.415616701032604]
アルツハイマー病(英: Alzheimer's Disease、AD)は、個人間での進行率の多様性を特徴とする神経変性疾患である。
与えられたベースライン情報を用いてCThトラジェクトリを生成する条件付きスコアベース拡散モデルを提案する。
本モデルでは6~36ヶ月のCThに比べて95%間隔が狭いほぼゼロバイアスを有する。
論文 参考訳(メタデータ) (2024-03-11T17:26:18Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - Approximate Bayesian Computation for an Explicit-Duration Hidden Markov
Model of COVID-19 Hospital Trajectories [55.786207368853084]
新型コロナウイルス(COVID-19)のパンデミックの中、病院の資源をモデル化する問題に取り組んでいます。
幅広い適用性のために、関心のある領域の患者レベルデータが利用できない、一般的なが困難なシナリオに注目します。
本稿では,ACED-HMM(ACED-HMM)と呼ばれる集合数正規化隠れマルコフモデルを提案する。
論文 参考訳(メタデータ) (2021-04-28T15:32:42Z) - WRSE -- a non-parametric weighted-resolution ensemble for predicting
individual survival distributions in the ICU [0.251657752676152]
集中治療室(ICU)における死亡リスクの動的評価は、患者を階層化し、治療効果を知らせたり、早期警戒システムの一部として機能したりすることができる。
現状の確率モデルと競合する結果を示すとともに,2~9倍のトレーニング時間を大幅に短縮する。
論文 参考訳(メタデータ) (2020-11-02T10:13:59Z) - Variational Disentanglement for Rare Event Modeling [21.269897066024306]
本稿では,不均衡な分類問題における希少事象から学ぶための変分非絡み合い手法を提案する。
具体的には、潜在空間に課せられる極端分布の挙動を利用して、低頻度事象から情報を抽出する。
論文 参考訳(メタデータ) (2020-09-17T21:35:36Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
ニューラル常微分方程式を多状態生存モデル推定のためのフレキシブルで一般的な方法として用いる。
また,本モデルでは,サバイバルデータセット上での最先端性能を示すとともに,マルチステート環境での有効性を示す。
論文 参考訳(メタデータ) (2020-06-08T19:24:54Z) - Deep Recurrent Model for Individualized Prediction of Alzheimer's
Disease Progression [4.034948808542701]
アルツハイマー病(Alzheimer's disease, AD)は認知症の主要な原因の一つであり、数年間の進行が遅いことが特徴である。
本稿では,MRIバイオマーカーの表現型測定と臨床状態の軌跡を予測できる新しい計算フレームワークを提案する。
論文 参考訳(メタデータ) (2020-05-06T08:08:00Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。