Rigorous lower bound on dynamical exponents in gapless frustration-free systems
- URL: http://arxiv.org/abs/2406.06415v2
- Date: Sat, 19 Jul 2025 22:41:11 GMT
- Title: Rigorous lower bound on dynamical exponents in gapless frustration-free systems
- Authors: Rintaro Masaoka, Tomohiro Soejima, Haruki Watanabe,
- Abstract summary: This work rigorously establishes a universal lower bound $zge2$ for the dynamical exponent in frustration-free quantum many-body systems.<n>Remarkably, our result can be applied to prove new bounds for dynamics of classical processes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work rigorously establishes a universal lower bound $z\ge2$ for the dynamical exponent in frustration-free quantum many-body systems whose ground states exhibit power-law decaying correlations. The derivation relies on the Gosset-Huang inequality, providing a unified framework applicable across various lattice structures and spatial dimensions, independent of specific boundary conditions. Remarkably, our result can be applied to prove new bounds for dynamics of classical stochastic processes. Specifically, we utilize a well-established mapping from the time evolution of local Markov processes with detailed balance to that of frustration-free quantum Hamiltonians, known as Rokhsar-Kivelson Hamiltonians. This proves $z \ge 2$ for such Markov processes, which is an improvement over existing bounds. Beyond these applications, the quantum analysis of the $z\ge2$ bound is further broadened to include systems exhibiting hidden correlations, which may not be evident from purely local operators.
Related papers
- Operator-space fragmentation and integrability in Pauli-Lindblad models [0.0]
In closed quantum systems Hilbert-space fragmentation is an effective mechanism for slowing decoherence in the presence of constrained interactions.<n>We develop a general mechanism for operator-space fragmentation of mixed states, undergoing Lindbladian evolution.<n>Using these methods we uncover a range of universal dynamical regimes in Pauli-Lindblad models.
arXiv Detail & Related papers (2025-06-19T18:01:25Z) - Weak coupling limit for quantum systems with unbounded weakly commuting system operators [50.24983453990065]
This work is devoted to a rigorous analysis of the weak coupling limit (WCL) for the reduced dynamics of an open infinite-dimensional quantum system interacting with electromagnetic field or a reservoir formed by Fermi or Bose particles.<n>We derive in the weak coupling limit the reservoir statistics, which is determined by whose terms in the multi-point correlation functions of the reservoir are non-zero in the WCL.<n>We prove that the resulting reduced system dynamics converges to unitary dynamics with a modified Hamiltonian which can be interpreted as a Lamb shift to the original Hamiltonian.
arXiv Detail & Related papers (2025-05-13T05:32:34Z) - Rigorous lower bound of the dynamical critical exponent of the Ising model [0.0]
We study the kinetic Ising model under Glauber dynamics.<n>We rigorously improve the previously known estimate $z geq 2 - eta$.
arXiv Detail & Related papers (2025-02-14T04:40:24Z) - Unified analysis of non-Markovian open quantum systems in Gaussian environment using superoperator formalism [4.504072151606679]
We present perturbative error bounds for the non-Markovian dynamics of observables in open quantum systems.
This extends the work of [Mascherpa et al., Phys. Rev. Lett. 118, 100401, 2017], which demonstrated qualitatively tighter bounds over the standard Gr"onwall-type analysis.
arXiv Detail & Related papers (2024-11-13T16:19:32Z) - Complexity of geometrically local stoquastic Hamiltonians [1.474723404975345]
The QMA-completeness of the local Hamiltonian problem is a landmark result of the field of Hamiltonian complexity.
We show that both the two- and one-dimensional geometrically local analogues remain MA-hard with high enough qudit dimension.
arXiv Detail & Related papers (2024-07-22T09:27:25Z) - Hamiltonians for Quantum Systems with Contact Interactions [49.1574468325115]
We show that in the limit one obtains the one-body Hamiltonian for the light particle subject to $N$ (non-local) point interactions placed at fixed positions.
We will verify that such non-local point interactions do not exhibit the ultraviolet pathologies that are present in the case of standard local point interactions.
arXiv Detail & Related papers (2024-07-09T14:04:11Z) - $W$ state is not the unique ground state of any local Hamiltonian [0.0]
characterization of ground states among all quantum states is an important problem in quantum many-body physics.
We introduce a new class of simple states, including the $W$ state, that can only occur as a ground state alongside an exactly degenerate partner.
arXiv Detail & Related papers (2023-10-16T18:00:01Z) - Theory of robust quantum many-body scars in long-range interacting systems [0.0]
Quantum many-body scars (QMBS) are exceptional energy eigenstates of quantum many-body systems.
We show that long-range interacting quantum spin systems generically host robust QMBS.
Our theory unveils the stability mechanism of such QMBS for arbitrary system size.
arXiv Detail & Related papers (2023-09-21T22:00:40Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Observing super-quantum correlations across the exceptional point in a
single, two-level trapped ion [48.7576911714538]
In two-level quantum systems - qubits - unitary dynamics theoretically limit these quantum correlations to $2qrt2$ or 1.5 respectively.
Here, using a dissipative, trapped $40$Ca$+$ ion governed by a two-level, non-Hermitian Hamiltonian, we observe correlation values up to 1.703(4) for the Leggett-Garg parameter $K_3$.
These excesses occur across the exceptional point of the parity-time symmetric Hamiltonian responsible for the qubit's non-unitary, coherent dynamics.
arXiv Detail & Related papers (2023-04-24T19:44:41Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - The Negativity Hamiltonian: An operator characterization of mixed-state
entanglement [0.0]
We study the structure of the negativity Hamiltonian for fermionic conformal field theories and a free fermion chain.
In both cases, we show that the negativity Hamiltonian assumes a quasi-local functional form, that is captured by simple functional relations.
arXiv Detail & Related papers (2022-01-11T15:08:41Z) - Boundary Chaos [0.0]
Scrambling in many-body quantum systems causes initially local observables to spread uniformly over the whole available space under unitary dynamics.
We present a free quantum circuit model, in which ergodicity is induced by an impurity interaction placed on the system's boundary.
arXiv Detail & Related papers (2021-12-09T18:34:08Z) - Spectrum of localized states in fermionic chains with defect and
adiabatic charge pumping [68.8204255655161]
We study the localized states of a generic quadratic fermionic chain with finite-range couplings.
We analyze the robustness of the connection between bands against perturbations of the Hamiltonian.
arXiv Detail & Related papers (2021-07-20T18:44:06Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Entanglement Hamiltonian of Interacting Systems: Local Temperature
Approximation and Beyond [0.0]
We investigate the second quantization form of the entanglement Hamiltonian of various subregions for the ground-state of lattice fermions and spin models.
The relation between the EH and the model Hamiltonian itself is an unsolved problem for the ground-state of generic local Hamiltonians.
arXiv Detail & Related papers (2020-12-09T19:00:02Z) - Self-consistent theory of mobility edges in quasiperiodic chains [62.997667081978825]
We introduce a self-consistent theory of mobility edges in nearest-neighbour tight-binding chains with quasiperiodic potentials.
mobility edges are generic in quasiperiodic systems which lack the energy-independent self-duality of the commonly studied Aubry-Andr'e-Harper model.
arXiv Detail & Related papers (2020-12-02T19:00:09Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Operator-algebraic renormalization and wavelets [62.997667081978825]
We construct the continuum free field as the scaling limit of Hamiltonian lattice systems using wavelet theory.
A renormalization group step is determined by the scaling equation identifying lattice observables with the continuum field smeared by compactly supported wavelets.
arXiv Detail & Related papers (2020-02-04T18:04:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.