Spatiotemporal Graph Neural Network Modelling Perfusion MRI
- URL: http://arxiv.org/abs/2406.06434v1
- Date: Mon, 10 Jun 2024 16:24:46 GMT
- Title: Spatiotemporal Graph Neural Network Modelling Perfusion MRI
- Authors: Ruodan Yan, Carola-Bibiane Schönlieb, Chao Li,
- Abstract summary: Per vascular MRI (pMRI) offers valuable insights into tumority and promises to predict tumor genotypes.
Yet effective models tailored to 4D pMRI are still lacking.
This study presents the first attempt to model 4D pMRI using a GNN-based model.
- Score: 12.712005118761516
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Perfusion MRI (pMRI) offers valuable insights into tumor vascularity and promises to predict tumor genotypes, thus benefiting prognosis for glioma patients, yet effective models tailored to 4D pMRI are still lacking. This study presents the first attempt to model 4D pMRI using a GNN-based spatiotemporal model PerfGAT, integrating spatial information and temporal kinetics to predict Isocitrate DeHydrogenase (IDH) mutation status in glioma patients. Specifically, we propose a graph structure learning approach based on edge attention and negative graphs to optimize temporal correlations modeling. Moreover, we design a dual-attention feature fusion module to integrate spatiotemporal features while addressing tumor-related brain regions. Further, we develop a class-balanced augmentation methods tailored to spatiotemporal data, which could mitigate the common label imbalance issue in clinical datasets. Our experimental results demonstrate that the proposed method outperforms other state-of-the-art approaches, promising to model pMRI effectively for patient characterization.
Related papers
- TADM: Temporally-Aware Diffusion Model for Neurodegenerative Progression on Brain MRI [4.414541804340033]
Temporally-Aware Diffusion Model (TADM) learns the distribution of structural changes in terms of intensity differences between scans.
During training, we propose to leverage a pre-trained Brain-Age Estimator (BAE) to refine the model's training process.
Our approach will benefit applications, such as predicting patient outcomes or improving treatments for patients.
arXiv Detail & Related papers (2024-06-18T09:00:49Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Temporally Adjustable Longitudinal Fluid-Attenuated Inversion Recovery
MRI Estimation / Synthesis for Multiple Sclerosis [0.0]
Multiple Sclerosis (MS) is a chronic progressive neurological disease characterized by the development of lesions in the white matter of the brain.
FLAIR brain magnetic resonance imaging (MRI) provides superior visualization and characterization of MS lesions, relative to other MRI modalities.
Longitudinal brain FLAIR MRI in MS, involving repetitively imaging a patient over time, provides helpful information for clinicians towards monitoring disease progression.
Predicting future whole brain MRI examinations with variable time lag has only been attempted in limited applications, such as healthy aging and structural degeneration in Alzheimer's Disease.
arXiv Detail & Related papers (2022-09-09T12:42:00Z) - Lesion-Specific Prediction with Discriminator-Based Supervised Guided
Attention Module Enabled GANs in Multiple Sclerosis [0.0]
Multiple Sclerosis (MS) is a chronic neurological condition characterized by the development of lesions in the white matter of the brain.
In this study, we propose a novel modification to generative adversarial networks (GANs) to predict future lesion-specific FLAIR MRI for MS at fixed time intervals.
arXiv Detail & Related papers (2022-08-30T20:37:38Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Deep Learning for Reaction-Diffusion Glioma Growth Modelling: Towards a
Fully Personalised Model? [0.2609639566830968]
Reaction-diffusion models have been proposed for decades to capture the growth of gliomas.
Deep convolutional neural networks (DCNNs) can address the pitfalls commonly encountered in the field.
This approach may open the perspective of a clinical application of reaction-diffusion growth models for tumour prognosis and treatment planning.
arXiv Detail & Related papers (2021-11-26T10:16:57Z) - Learn-Morph-Infer: a new way of solving the inverse problem for brain
tumor modeling [1.1214822628210914]
We introduce a methodology for inferring patient-specific spatial distribution of brain tumor from T1Gd and FLAIR MRI medical scans.
Coined as itLearn-Morph-Infer, the method achieves real-time performance in the order of minutes on widely available hardware.
arXiv Detail & Related papers (2021-11-07T13:45:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.