Resonator-mediated quantum gate between distant charge qubits
- URL: http://arxiv.org/abs/2406.06442v2
- Date: Sat, 26 Oct 2024 05:40:49 GMT
- Title: Resonator-mediated quantum gate between distant charge qubits
- Authors: Florian Kayatz, Jonas Mielke, Guido Burkard,
- Abstract summary: We show that photons can mediate both an $imathrmSWAP$ gate as well as a $sqrtimathrmSWAP$ gate between two distant charge qubits.
We conjecture that a decrease of the charge qubit dephasing rate by one order of magnitude is conjectured to result in gate fidelities surpassing 95%.
- Score: 0.0
- License:
- Abstract: Strong charge-photon coupling allows the coherent coupling of a charge qubit, realized by a single charge carrier (either an electron or a hole) in a double quantum dot, to photons of a microwave resonator. Here, we theoretically demonstrate that, in the dispersive regime, the photons can mediate both an $i\mathrm{SWAP}$ gate as well as a $\sqrt{i\mathrm{SWAP}}$ gate between two distant charge qubits. We provide a thorough discussion of the impact of the dominant noise sources, resonator damping and charge qubit dephasing on the average gate fidelity. Assuming a state-of-the art resonator decay rate and charge qubit dephasing rate, the predicted average gate fidelities are below 90\%. However, a decrease of the charge qubit dephasing rate by one order of magnitude is conjectured to result in gate fidelities surpassing 95\%.
Related papers
- A single-photon emitter coupled to a phononic-crystal resonator in the
resolved-sideband regime [2.116339958735258]
We observe the interaction between a mechanical resonator and a single-photon emitter.
Our results represent a major step towards quantum control of the mechanical resonator via a single-photon emitter.
arXiv Detail & Related papers (2023-11-09T13:11:03Z) - Strong hole-photon coupling in planar Ge: probing the charge degree and
Wigner molecule states [0.0]
We present strong coupling between a hole charge qubit and microwave photons in a superconducting quantum interference device (SQUID) array resonator.
This work paves the way towards coherent quantum connections between remote hole qubits in planar Ge, required to scale up hole-based quantum processors.
arXiv Detail & Related papers (2023-10-31T17:27:46Z) - Measurement of small photon numbers in circuit QED resonators [42.01857709446569]
Off-resonant interaction of fluctuating photons in a resonator with a qubit increases the qubit dephasing rate.
We use this effect to measure a small average number of intracavity photons that are coherently or thermally driven.
arXiv Detail & Related papers (2023-10-25T02:40:56Z) - Qubit readouts enabled by qubit cloaking [49.1574468325115]
Time-dependent drives play a crucial role in quantum computing efforts.
They enable single-qubit control, entangling logical operations, as well as qubit readout.
Qubit cloaking was introduced in Lled'o, Dassonneville, et al.
arXiv Detail & Related papers (2023-05-01T15:58:25Z) - Cat-qubit-inspired gate on cos($2\theta$) qubits [77.34726150561087]
We introduce a single-qubit $Z$ gate inspired by the noise-bias preserving gate of the Kerr-cat qubit.
This scheme relies on a $pi$ rotation in phase space via a beamsplitter-like transformation between a qubit and ancilla qubit.
arXiv Detail & Related papers (2023-04-04T23:06:22Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Passive quantum phase gate for photons based on three level emitters [0.0]
We present a fully passive method for implementing a quantum phase gate between two photons travelling in a one-dimensional wave guide.
The gate is based on chirally coupled emitters in a three-level $V$ configuration.
We show that the fidelity can reach values $mathcalFsim99%$ with a gate success probability of $>99%$ for as few as 8 emitters.
arXiv Detail & Related papers (2021-12-21T16:17:58Z) - Long-range two-hybrid-qubit gates mediated by a microwave cavity with
red sidebands [0.0]
We show that off-resonant red-sideband-mediated two-qubit gates can exhibit fidelities $>$95% for realistic operating parameters.
In particular, we show that off-resonant red-sideband-mediated two-qubit gates can exhibit fidelities $>$99%.
arXiv Detail & Related papers (2021-06-19T19:00:26Z) - Proposal for entangling gates on fluxonium qubits via a two-photon
transition [0.0]
We propose a family of microwave-activated entangling gates on two capacitively coupled fluxonium qubits.
A microwave pulse applied to either qubit induces two-photon Rabi oscillations with a negligible leakage outside the computational subspace.
Our gate scheme is promising for large-scale quantum processors.
arXiv Detail & Related papers (2020-11-19T18:17:42Z) - Photon-mediated entanglement scheme between a ZnO semiconductor defect
and a trapped Yb ion [58.720142291102135]
We propose an optical scheme to generate an entangled state between a trapped ion and a solid state donorbit.
We show that an entanglement rate of 21 kHz and entanglement fidelity of 94 % can be attained using a weak scheme with reasonable parameters.
arXiv Detail & Related papers (2020-06-25T22:58:54Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.