Passive quantum phase gate for photons based on three level emitters
- URL: http://arxiv.org/abs/2112.11328v2
- Date: Mon, 26 Sep 2022 10:18:21 GMT
- Title: Passive quantum phase gate for photons based on three level emitters
- Authors: Bj\"orn Schrinski, Miren Lamaison, Anders S. S{\o}rensen
- Abstract summary: We present a fully passive method for implementing a quantum phase gate between two photons travelling in a one-dimensional wave guide.
The gate is based on chirally coupled emitters in a three-level $V$ configuration.
We show that the fidelity can reach values $mathcalFsim99%$ with a gate success probability of $>99%$ for as few as 8 emitters.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a fully passive method for implementing a quantum phase gate
between two photons travelling in a one-dimensional wave guide. The gate is
based on chirally coupled emitters in a three-level $V$ configuration, which
only interact through the photon field without any external control fields. We
describe the (non-)linear scattering of the emerging polariton states and show
that for near resonant photons the scattering dynamics directly implements a
perfect control phase gate between the incoming photons in the limit of many
emitters. For a finite number of emitters we show that the dominant error
mechanism can be suppressed by a simple frequency filter at the cost of a minor
reduction in the success probability. We verify the results via comparison with
exact scattering matrix theory and show that the fidelity can reach values
$\mathcal{F}\sim99\%$ with a gate success probability of $>99\%$ for as few as
8 emitters.
Related papers
- Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - Convert laser light into single photons via interference [5.7581597418105055]
An elegant route to convert laser light into single photons is based on photon blockade in a cavity with a single atom in the strong coupling regime.
Here we propose an interference-based approach where laser light can be transformed into single photons by destructively interfering with a weak but super-bunched incoherent field emitted from a cavity coupling to a single quantum emitter.
arXiv Detail & Related papers (2024-03-25T22:58:48Z) - Realisation of a Coherent and Efficient One-Dimensional Atom [0.15274583259797847]
A coherent and efficiently coupled one-dimensional atom provides a large nonlinearity, enabling photonic quantum gates.
Here, we use a semiconductor quantum dot in an open microcavity as an implementation of a one-dimensional atom.
Our results pave the way towards the creation of exotic photonic states and two-photon phase gates.
arXiv Detail & Related papers (2024-02-19T21:48:12Z) - The quantum beam splitter with many partially indistinguishable photons:
multiphotonic interference and asymptotic classical correspondence [44.99833362998488]
We present the analysis of the quantum two-port interferometer in the $n rightarrow infty$ limit of $n$ partially indistinguishable photons.
Our main result is that the output distribution is dominated by the $O(sqrtn)$ channels around a certain $j*$ that depends on the degree of indistinguishability.
The form is essentially the doubly-humped semi-classical envelope of the distribution that would arise from $2 j*$ indistinguishable photons, and which reproduces the corresponding classical intensity distribution.
arXiv Detail & Related papers (2023-12-28T01:48:26Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Almost indistinguishable single photons via multiplexing cascaded
biphotons with cavity modulation and phase compensation [0.0]
We study the frequency entanglement of a biphoton generated from alkali metal atomic ensembles.
The purity of single photon reaches up to $0.999$ and the entanglement entropy $S$ of the biphoton reduces to $0.006$.
An extremely low frequency entanglement implies an almost indistinguishable single photon source.
arXiv Detail & Related papers (2022-01-26T15:34:26Z) - Robust-fidelity hyperparallel controlled-phase-flip gate through
microcavities [0.0]
Hyperparallel quantum information processing outperforms its traditional parallel one in terms of channel capacity, low loss rate, and processing speed.
We present a way for implementing a robust hyper-parallel optical controlled-phase-flip gate through microcavities.
arXiv Detail & Related papers (2020-08-01T13:02:24Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.