Deep Generative Modeling Reshapes Compression and Transmission: From Efficiency to Resiliency
- URL: http://arxiv.org/abs/2406.06446v1
- Date: Mon, 10 Jun 2024 16:36:02 GMT
- Title: Deep Generative Modeling Reshapes Compression and Transmission: From Efficiency to Resiliency
- Authors: Jincheng Dai, Xiaoqi Qin, Sixian Wang, Lexi Xu, Kai Niu, Ping Zhang,
- Abstract summary: We show the dual-functionality of deep generative models that reshapes both data compression for efficiency and transmission error concealment for resiliency.
We show that the kernel of many large generative models is powerful predictor that can capture complex relationships among semantic latent variables.
- Score: 12.129722150469968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Information theory and machine learning are inextricably linked and have even been referred to as "two sides of the same coin". One particularly elegant connection is the essential equivalence between probabilistic generative modeling and data compression or transmission. In this article, we reveal the dual-functionality of deep generative models that reshapes both data compression for efficiency and transmission error concealment for resiliency. We present how the contextual predictive capabilities of powerful generative models can be well positioned to be strong compressors and estimators. In this sense, we advocate for viewing the deep generative modeling problem through the lens of end-to-end communications, and evaluate the compression and error restoration capabilities of foundation generative models. We show that the kernel of many large generative models is powerful predictor that can capture complex relationships among semantic latent variables, and the communication viewpoints provide novel insights into semantic feature tokenization, contextual learning, and usage of deep generative models. In summary, our article highlights the essential connections of generative AI to source and channel coding techniques, and motivates researchers to make further explorations in this emerging topic.
Related papers
- Neural Residual Diffusion Models for Deep Scalable Vision Generation [17.931568104324985]
We propose a unified and massively scalable Neural Residual Diffusion Models framework (Neural-RDM)
The proposed neural residual models obtain state-of-the-art scores on image's and video's generative benchmarks.
arXiv Detail & Related papers (2024-06-19T04:57:18Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Generative Learning of Continuous Data by Tensor Networks [45.49160369119449]
We introduce a new family of tensor network generative models for continuous data.
We benchmark the performance of this model on several synthetic and real-world datasets.
Our methods give important theoretical and empirical evidence of the efficacy of quantum-inspired methods for the rapidly growing field of generative learning.
arXiv Detail & Related papers (2023-10-31T14:37:37Z) - From Identifiable Causal Representations to Controllable Counterfactual Generation: A Survey on Causal Generative Modeling [17.074858228123706]
We focus on fundamental theory, methodology, drawbacks, datasets, and metrics.
We cover applications of causal generative models in fairness, privacy, out-of-distribution generalization, precision medicine, and biological sciences.
arXiv Detail & Related papers (2023-10-17T05:45:32Z) - Multi-Context Dual Hyper-Prior Neural Image Compression [10.349258638494137]
We propose a Transformer-based nonlinear transform to efficiently capture both local and global information from the input image.
We also introduce a novel entropy model that incorporates two different hyperpriors to model cross-channel and spatial dependencies of the latent representation.
Our experiments show that our proposed framework performs better than the state-of-the-art methods in terms of rate-distortion performance.
arXiv Detail & Related papers (2023-09-19T17:44:44Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
We show that strong performance can be achieved by a method we call Iter-RetGen, which synergizes retrieval and generation in an iterative manner.
A model output shows what might be needed to finish a task, and thus provides an informative context for retrieving more relevant knowledge.
Iter-RetGen processes all retrieved knowledge as a whole and largely preserves the flexibility in generation without structural constraints.
arXiv Detail & Related papers (2023-05-24T16:17:36Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Deep Latent-Variable Models for Text Generation [7.119436003155924]
Deep neural network-based end-to-end architectures have been widely adopted.
End-to-end approach conflates all sub-modules, which used to be designed by complex handcrafted rules, into a holistic encode-decode architecture.
This dissertation presents how deep latent-variable models can improve over the standard encoder-decoder model for text generation.
arXiv Detail & Related papers (2022-03-03T23:06:39Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Counterfactual Generative Networks [59.080843365828756]
We propose to decompose the image generation process into independent causal mechanisms that we train without direct supervision.
By exploiting appropriate inductive biases, these mechanisms disentangle object shape, object texture, and background.
We show that the counterfactual images can improve out-of-distribution with a marginal drop in performance on the original classification task.
arXiv Detail & Related papers (2021-01-15T10:23:12Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.