論文の概要: Cometh: A continuous-time discrete-state graph diffusion model
- arxiv url: http://arxiv.org/abs/2406.06449v1
- Date: Mon, 10 Jun 2024 16:39:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 12:59:23.953568
- Title: Cometh: A continuous-time discrete-state graph diffusion model
- Title(参考訳): Cometh: 連続時間離散状態グラフ拡散モデル
- Authors: Antoine Siraudin, Fragkiskos D. Malliaros, Christopher Morris,
- Abstract要約: 我々は,連続時間離散状態グラフ拡散モデルであるCometを提案し,グラフデータを連続時間拡散モデルフレームワークに統合する。
連続時間の統合は、最先端の離散状態拡散モデルよりも様々な指標において顕著な改善をもたらすことを示す。
- 参考スコア(独自算出の注目度): 8.444907767842228
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discrete-state denoising diffusion models led to state-of-the-art performance in graph generation, especially in the molecular domain. Recently, they have been transposed to continuous time, allowing more flexibility in the reverse process and a better trade-off between sampling efficiency and quality. Here, to leverage the benefits of both approaches, we propose Cometh, a continuous-time discrete-state graph diffusion model, integrating graph data into a continuous-time diffusion model framework. Empirically, we show that integrating continuous time leads to significant improvements across various metrics over state-of-the-art discrete-state diffusion models on a large set of molecular and non-molecular benchmark datasets.
- Abstract(参考訳): 離散状態分解拡散モデルにより、特に分子領域におけるグラフ生成における最先端の性能が向上した。
最近、それらは継続的な時間に変換され、リバースプロセスの柔軟性が向上し、サンプリング効率と品質のトレードオフが良くなった。
本稿では,両手法の利点を活用するために,連続時間離散状態グラフ拡散モデルであるCometを提案し,グラフデータを連続時間拡散モデルフレームワークに統合する。
実験により、連続時間の統合は、分子および非分子ベンチマークデータセットの大規模なセット上での最先端の離散状態拡散モデルよりも、様々な指標において顕著な改善をもたらすことを示す。
関連論文リスト
- DeFoG: Discrete Flow Matching for Graph Generation [45.037260759871124]
グラフ生成のための離散フローマッチングを用いた新しいフレームワークであるDeFoGを提案する。
DeFoGはフローベースのアプローチを採用しており、効率的な線形雑音化プロセスと柔軟な雑音化プロセスを備えている。
我々は,DeFoGが合成および分子データセット上で最先端の結果を得ることを示す。
論文 参考訳(メタデータ) (2024-10-05T18:52:54Z) - Tuning Timestep-Distilled Diffusion Model Using Pairwise Sample Optimization [97.35427957922714]
任意の時間ステップ蒸留拡散モデルを直接微調整できるPSOアルゴリズムを提案する。
PSOは、現在の時間ステップ蒸留モデルからサンプリングされた追加の参照画像を導入し、トレーニング画像と参照画像との相対的な近縁率を増大させる。
PSOは、オフラインとオンラインのペアワイズ画像データの両方を用いて、蒸留モデルを直接人間の好ましくない世代に適応させることができることを示す。
論文 参考訳(メタデータ) (2024-10-04T07:05:16Z) - Edge-preserving noise for diffusion models [4.435514696080208]
本稿では,拡散確率モデル(DDPM)を一般化した新しいエッジ保存拡散モデルを提案する。
特に、エッジ保存と等方性ガウスノイズの間で異なるエッジ対応ノイズスケジューラを導入する。
モデルの生成過程はより高速に収束し, 対象の分布とより密に一致していることを示す。
論文 参考訳(メタデータ) (2024-10-02T13:29:52Z) - Advancing Graph Generation through Beta Diffusion [49.49740940068255]
Graph Beta Diffusion (GBD)は、グラフデータの多様な性質を扱うために特別に設計された生成モデルである。
本稿では, 臨界グラフトポロジを安定化させることにより, 生成グラフの現実性を高める変調手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T17:42:57Z) - Discrete-state Continuous-time Diffusion for Graph Generation [46.626952802292074]
拡散生成モデルはグラフ生成タスクに適用されている。
離散状態連続時間設定でグラフ拡散生成を定式化する。
提案モデルでは,最先端のグラフ生成ソリューションと競合する経験的性能を示す。
論文 参考訳(メタデータ) (2024-05-19T00:09:42Z) - Convergence Analysis of Discrete Diffusion Model: Exact Implementation
through Uniformization [17.535229185525353]
連続マルコフ連鎖の均一化を利用したアルゴリズムを導入し、ランダムな時間点の遷移を実装した。
我々の結果は、$mathbbRd$における拡散モデルの最先端の成果と一致し、さらに$mathbbRd$設定と比較して離散拡散モデルの利点を浮き彫りにする。
論文 参考訳(メタデータ) (2024-02-12T22:26:52Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - Fast Graph Generative Model via Spectral Diffusion [38.31052833073743]
空間全体におけるフルランク拡散SDEの実行は、学習グラフトポロジ生成からの拡散モデルを妨げると論じる。
グラフスペクトル空間上の低ランク拡散SDEによって駆動される効率的なグラフスペクトル拡散モデル(GSDM)を提案する。
論文 参考訳(メタデータ) (2022-11-16T12:56:32Z) - DiGress: Discrete Denoising diffusion for graph generation [79.13904438217592]
DiGressは、分類ノードとエッジ属性を持つグラフを生成するための離散化拡散モデルである。
分子と非分子のデータセットで最先端のパフォーマンスを実現し、最大3倍の妥当性が向上する。
また、1.3Mの薬物様分子を含む大規模なGuacaMolデータセットにスケールする最初のモデルでもある。
論文 参考訳(メタデータ) (2022-09-29T12:55:03Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
本稿では,連続時間フレームワークを用いたグラフのスコアベース生成モデルを提案する。
本手法は, トレーニング分布に近い分子を生成できるが, 化学価数則に違反しないことを示す。
論文 参考訳(メタデータ) (2022-02-05T08:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。