論文の概要: Transforming Wearable Data into Personal Health Insights using Large Language Model Agents
- arxiv url: http://arxiv.org/abs/2406.06464v4
- Date: Mon, 08 Sep 2025 17:59:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:02.678598
- Title: Transforming Wearable Data into Personal Health Insights using Large Language Model Agents
- Title(参考訳): 大規模言語モデルエージェントを用いたウェアラブルデータからパーソナルヘルスインサイトへの変換
- Authors: Mike A. Merrill, Akshay Paruchuri, Naghmeh Rezaei, Geza Kovacs, Javier Perez, Yun Liu, Erik Schenck, Nova Hammerquist, Jake Sunshine, Shyam Tailor, Kumar Ayush, Hao-Wei Su, Qian He, Cory Y. McLean, Mark Malhotra, Shwetak Patel, Jiening Zhan, Tim Althoff, Daniel McDuff, Xin Liu,
- Abstract要約: 大規模言語モデル(LLM)エージェントは、この分析を大規模に行う上で、有望だがほとんど未解決のソリューションを提供する。
我々は,多段階推論とコード生成と情報検索を利用して行動保健データを解析・解釈するシステムであるPersonal Health Insights Agent(PHIA)を紹介する。
650時間の人間専門家による評価では、PHIAは強いコード生成ベースラインを著しく上回り、客観的、数値的な質問、オープンエンドの質問に対して84%の精度を達成し、最高品質のレーティングの2倍の確率で83%の好評を得た。
- 参考スコア(独自算出の注目度): 23.033998849079563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deriving personalized insights from popular wearable trackers requires complex numerical reasoning that challenges standard LLMs, necessitating tool-based approaches like code generation. Large language model (LLM) agents present a promising yet largely untapped solution for this analysis at scale. We introduce the Personal Health Insights Agent (PHIA), a system leveraging multistep reasoning with code generation and information retrieval to analyze and interpret behavioral health data. To test its capabilities, we create and share two benchmark datasets with over 4000 health insights questions. A 650-hour human expert evaluation shows that PHIA significantly outperforms a strong code generation baseline, achieving 84% accuracy on objective, numerical questions and, for open-ended ones, earning 83% favorable ratings while being twice as likely to achieve the highest quality rating. This work can advance behavioral health by empowering individuals to understand their data, enabling a new era of accessible, personalized, and data-driven wellness for the wider population.
- Abstract(参考訳): 一般的なウェアラブルトラッカーからパーソナライズされた洞察を引き出すには、コード生成のようなツールベースのアプローチを必要とする、標準的なLLMに挑戦する複雑な数値推論が必要である。
大規模言語モデル(LLM)エージェントは、この分析を大規模に行う上で、有望だがほとんど未解決のソリューションを提供する。
我々は,多段階推論とコード生成と情報検索を利用して行動保健データを解析・解釈するシステムであるPersonal Health Insights Agent(PHIA)を紹介する。
その能力をテストするために、2つのベンチマークデータセットを作成し、4000以上のヘルスインサイトに関する質問を共有します。
650時間の人間専門家による評価では、PHIAは強いコード生成ベースラインを著しく上回り、客観的、数値的な質問、オープンエンドの質問に対して84%の精度を達成し、最高品質のレーティングの2倍の確率で83%の好評を得た。
この研究は、個人に自分のデータを理解する権限を与えることで行動の健康を向上させ、より広い人口に対してアクセスしやすく、パーソナライズされ、データ駆動型ウェルネスの新しい時代を可能にする。
関連論文リスト
- DAMMI:Daily Activities in a Psychologically Annotated Multi-Modal IoT dataset [10.771838327042609]
DAMMIデータセットは、この分野の研究者を支援するように設計されている。
これには、ホームインストールされたセンサー、スマートフォンデータ、リストバンド146日以上にわたって収集された高齢者の日々の行動データが含まれている。
データ収集は、新型コロナウイルス(COVID-19)のパンデミック、正月、ラマダンの宗教月など、重要なイベントにまたがる。
論文 参考訳(メタデータ) (2024-10-05T13:26:54Z) - A State-of-the-Art Review of Computational Models for Analyzing Longitudinal Wearable Sensor Data in Healthcare [1.7872597573698263]
長期追跡は、数ヶ月のタイムスケールで定義されており、健康変化の指標としてパターンや変化の洞察を与えることができる。
これらの知見は、医療と医療をより予測し、予防し、パーソナライズし、参加しやすくする(The 4P's)。
論文 参考訳(メタデータ) (2024-07-31T15:08:15Z) - Retrieval Augmented Thought Process for Private Data Handling in Healthcare [53.89406286212502]
Retrieval-Augmented Thought Process (RATP)を紹介する。
RATPは大規模言語モデル(LLM)の思考生成を定式化する
電子カルテのプライベートデータセットにおいて、RATPは、質問応答タスクのコンテキスト内検索強化生成と比較して35%の精度を達成している。
論文 参考訳(メタデータ) (2024-02-12T17:17:50Z) - Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey [53.691704671844406]
IoT(Internet of Things)は、特にヘルスケアにおいて、人間の生活の質を大幅に向上させる。
ヒトデジタルツイン(HDT)は、個体の複製を包括的に特徴付ける革新的なパラダイムとして提案されている。
HDTは、多用途で生き生きとした人間のデジタルテストベッドとして機能することで、医療監視の応用を超えて、IoTヘルスの強化を図っている。
最近、生成人工知能(GAI)は、高度なAIアルゴリズムを利用して、多種多様なデータを自動的に生成、操作、修正できるため、有望なソリューションである可能性がある。
論文 参考訳(メタデータ) (2024-01-22T03:17:41Z) - README: Bridging Medical Jargon and Lay Understanding for Patient Education through Data-Centric NLP [9.432205523734707]
医療用語を患者に親しみやすい平易な言語に簡略化することを目的とした,レイ定義の自動生成という新たなタスクを導入する。
このデータセットは、5万以上のユニークな(医療用語、日常の定義)ペアと30万の言及からなる。
また、データフィルタリング、拡張、選択を相乗化してデータ品質を改善する、データ中心のHuman-AIパイプラインも開発しました。
論文 参考訳(メタデータ) (2023-12-24T23:01:00Z) - From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models [21.427976533706737]
我々は,多センサデータから臨床的に有用な知見を合成するために,大規模言語モデルを活用する新しいアプローチを採っている。
うつ病や不安などの症状とデータの傾向がどのように関連しているかを,LSMを用いて推論する思考促進手法の連鎖を構築した。
GPT-4のようなモデルでは数値データの75%を正確に参照しており、臨床参加者は、この手法を用いて自己追跡データを解釈することへの強い関心を表明している。
論文 参考訳(メタデータ) (2023-11-21T23:53:27Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - A Survey on Computer Vision based Human Analysis in the COVID-19 Era [58.79053747159797]
新型コロナウイルスの出現は、社会全体だけでなく、個人の生活にも大きく影響している。
マスクやソーシャルディスタンシングの義務、公共空間での定期消毒、スクリーニングアプリケーションの使用など、さまざまな予防策が世界中で導入されている。
これらの発展は、(i)視覚データの自動解析による予防対策の支援、(ii)生体認証などの既存の視覚ベースのサービスの正常な操作を容易にする、新しいコンピュータビジョン技術の必要性を喚起した。
論文 参考訳(メタデータ) (2022-11-07T17:20:39Z) - Remote Medication Status Prediction for Individuals with Parkinson's
Disease using Time-series Data from Smartphones [75.23250968928578]
本稿では,パーキンソン病患者のmPowerデータセットを用いて薬剤状態を予測する方法を提案する。
提案手法は,3つの薬物状態を客観的に予測する上で有望な結果を示す。
論文 参考訳(メタデータ) (2022-07-26T02:08:08Z) - Assessing the Severity of Health States based on Social Media Posts [62.52087340582502]
ユーザの健康状態の重症度を評価するために,テキストコンテンツとコンテキスト情報の両方をモデル化する多視点学習フレームワークを提案する。
多様なNLUビューは、ユーザの健康を評価するために、タスクと個々の疾患の両方に効果を示す。
論文 参考訳(メタデータ) (2020-09-21T03:45:14Z) - Personal Health Knowledge Graphs for Patients [18.71820749477523]
既存の患者データ分析プラットフォームは、コンテキストを持ち、個人的であり、患者にとってトピックである情報を組み込むことができない。
質問に対する適切な回答を与えるためのレコメンデーションシステムは、患者の健康状態に関する個人情報を考慮すべきである。
論文 参考訳(メタデータ) (2020-03-31T19:35:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。