Online Newton Method for Bandit Convex Optimisation
- URL: http://arxiv.org/abs/2406.06506v1
- Date: Mon, 10 Jun 2024 17:44:11 GMT
- Title: Online Newton Method for Bandit Convex Optimisation
- Authors: Hidde Fokkema, Dirk van der Hoeven, Tor Lattimore, Jack J. Mayo,
- Abstract summary: We introduce a computationally efficient algorithm for zeroth-order bandit convex optimisation.
We prove that in the adversarial setting its regret is at most $d3.5 sqrtn mathrmpolylog(n, d)$ with high probability where $d$ is the time horizon.
In the setting the bound improves to $M d2 sqrtn mathrmpolylog(n, d)$ where $M in [d-1/2, d-1 / 4]$ is
- Score: 28.66596225688161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a computationally efficient algorithm for zeroth-order bandit convex optimisation and prove that in the adversarial setting its regret is at most $d^{3.5} \sqrt{n} \mathrm{polylog}(n, d)$ with high probability where $d$ is the dimension and $n$ is the time horizon. In the stochastic setting the bound improves to $M d^{2} \sqrt{n} \mathrm{polylog}(n, d)$ where $M \in [d^{-1/2}, d^{-1 / 4}]$ is a constant that depends on the geometry of the constraint set and the desired computational properties.
Related papers
- Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - Nearly Optimal Regret for Decentralized Online Convex Optimization [53.433398074919]
Decentralized online convex optimization (D-OCO) aims to minimize a sequence of global loss functions using only local computations and communications.
We develop novel D-OCO algorithms that can respectively reduce the regret bounds for convex and strongly convex functions.
Our algorithms are nearly optimal in terms of $T$, $n$, and $rho$.
arXiv Detail & Related papers (2024-02-14T13:44:16Z) - On the $O(\frac{\sqrt{d}}{T^{1/4}})$ Convergence Rate of RMSProp and Its Momentum Extension Measured by $\ell_1$ Norm [59.65871549878937]
This paper considers the RMSProp and its momentum extension and establishes the convergence rate of $frac1Tsum_k=1T.
Our convergence rate matches the lower bound with respect to all the coefficients except the dimension $d$.
Our convergence rate can be considered to be analogous to the $frac1Tsum_k=1T.
arXiv Detail & Related papers (2024-02-01T07:21:32Z) - A Whole New Ball Game: A Primal Accelerated Method for Matrix Games and
Minimizing the Maximum of Smooth Functions [44.655316553524855]
We design algorithms for minimizing $max_iin[n] f_i(x) over a $d$-dimensional Euclidean or simplex domain.
When each $f_i$ is $1$-Lipschitz and $1$-smooth, our method computes an $epsilon-approximate solution.
arXiv Detail & Related papers (2023-11-17T22:07:18Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - An Optimal Stochastic Algorithm for Decentralized Nonconvex Finite-sum
Optimization [25.21457349137344]
We show a proof to show DEAREST requires at most $mathcal O(+sqrtmnLvarepsilon-2)$ first-order oracle (IFO) calls and $mathcal O(Lvarepsilon-2/sqrt1-lambda_W)$ communication rounds.
arXiv Detail & Related papers (2022-10-25T11:37:11Z) - Decentralized Stochastic Variance Reduced Extragradient Method [25.21457349137344]
This paper studies decentralized convex-concave minimax optimization problems of the form $min_xmax_y fx,y triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msum
arXiv Detail & Related papers (2022-02-01T16:06:20Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
We study online learning with bandit feedback (i.e. learner has access to only zeroth-order oracle) where cost/reward functions admit a "pseudo-1d" structure.
We show a lower bound of $min(sqrtdT, T3/4)$ for the regret of any algorithm, where $T$ is the number of rounds.
We propose a new algorithm sbcalg that combines randomized online gradient descent with a kernelized exponential weights method to exploit the pseudo-1d structure effectively.
arXiv Detail & Related papers (2021-02-15T08:16:51Z) - Greedy Adversarial Equilibrium: An Efficient Alternative to
Nonconvex-Nonconcave Min-Max Optimization [28.431572772564518]
We show that Lipschitzitz's $varepsilon$-greedy adversarial model converges from any starting point to a $max_z f(x, z)$.
We also show that Lipschitz's $nabla_y f(x,y)$ is in the dimension $d$, $1/varepsilon$, and the bounds on $nabla2_y f(x,y)$ are $nabla2_y.
arXiv Detail & Related papers (2020-06-22T16:03:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.